证明:cos A − sin A + 1cos A + sin A − 1 = cosec A + cot A
已知:cosA − sinA + 1cosA + sinA − 1 = cosecA + cotA
要求:这里我们需要证明cosA − sinA + 1cosA + sinA − 1 = cosecA + cotA。
解答
现在,
cosA − sinA + 1cosA + sinA − 1 = cosecA + cotA
将左边分子和分母都除以sin A
= cos Asin A − sin Asin A + 1sin Acos Asin A + sin Asin A − 1sin A
= cot A − 1 + cosec Acot A + 1 − cosec A
= cot A − 1 + cosec Acot A + 1 − cosec A
= cot A + cosec A − 1cot A + 1 − cosec A
= cot A + cosec A − (cosec2 A − cot2 A)cot A + 1 − cosec A
= cot A + cosec A − {(cosec A − cot A)(cosec A + cot A)}cot A + 1 − cosec A
= (cot A + cosec A){1 − (cosec A − cot A)}cot A + 1 − cosec A
= (cot A + cosec A){1 − cosec A + cot A}{1 + cot A − cosec A}
= cot A + cosec A
所以,左边等于右边。
广告