简化并用指数形式写出答案。
(a) \( 3 \times 3^{10} \)
(b) \( 5^{2} \times 5^{7} \)
(c) \( (-7)^{2} \times(-7)^{7} \)
(d) \( 27^{3} \div 3^{9} \)
(e) \( \left(25^{0}+5^{0}\right) \times 5^{0} \)
(f) \( \left(2^{0} \div 3^{0}\right) \times 4^{0} \)
已知
(a) \( 3 \times 3^{10} \)
(b) \( 5^{2} \times 5^{7} \)
(c) \( (-7)^{2} \times(-7)^{7} \)
(d) \( 27^{3} \div 3^{9} \)
(e) \( \left(25^{0}+5^{0}\right) \times 5^{0} \)
(f) \( \left(2^{0} \div 3^{0}\right) \times 4^{0} \)
需要做的事情
我们必须简化并用指数形式写出答案。
解答
我们知道,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
因此,
(a) $3 \times 3^{10}=3^{1+10}$
$=3^{11}$
(b) $ 5^{2} \times 5^{7} = 5^{2+7}$
$=5^9$
(c) $(-7)^{2} \times(-7)^{7}=(-7)^{2+7}$
$=(-7)^{9}$
$=\frac{1}{7^9}$(d) $27^{3} \div 3^{9}=(3^3)^3 \div 3^9$
$=3^{3\times3} \div 3^9$
$=3^9 \div 3^9$
$=3^{9-9}$
$=3^0$
$=1$
(e) $(25^{0}+5^{0}) \times 5^{0}=(1+1) \times 1$
$=2\times1$
$=2$
(f) $(2^{0} \div 3^{0}) \times 4^{0}=(1 \div 1) \times 1$
$=1\times1$
$=1$
广告