简化以下表达式
\( 3^{4} \times 10^{4} \times 125 \times x^{10} \div 5^{7} \times 6^{4} \times\left(x^{7}\right) \)
已知
\( 3^{4} \times 10^{4} \times 125 \times x^{10} \div 5^{7} \times 6^{4} \times\left(x^{7}\right) \)
要求
我们需要求解x的值。
解答
我们知道:
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
因此:
$ \begin{array}{l} 3^{4} \times 10^{4} \times 125\times x^{10} \div 5^{7} \times 6^{4} \times x^{7} =\frac{3^{4} \times ( 2\times 5)^{4} \times 5^{3} \times x^{10} \times ( 2\times 3)^{4} \times x^{7}}{5^{7}}\ =\frac{3^{4} \times 2^{4} \times 5^{4} \times 5^{3} \times x^{10} \times 2^{4} \times 3^{4} \times x^{7}}{5^{7}}\ =3^{4+4} \times 2^{4+4} \times 5^{4+3-7} \times x^{10+7}\ =3^{8} \times 2^{8} \times 5^{0} \times x^{17}\ =2^{8} \times 3^{5} \times x^{17} \end{array}$
广告