解方程:$\frac{2}{5} z\ =\ \frac{3}{8} z\ +\ \frac{7}{20}$
已知: $\frac{2}{5} z\ =\ \frac{3}{8} z\ +\ \frac{7}{20}$
求解:我们需要求解给定表达式$\frac{2}{5} z\ =\ \frac{3}{8} z\ +\ \frac{7}{20}$中的$z$值。
解题步骤
$\frac{2}{5} z\ =\ \frac{3}{8} z\ +\ \frac{7}{20}$
$\frac{2}{5} z\ -\ \frac{3}{8} z\ =\ \frac{7}{20}$
$\frac{8( 2) z\ -\ 5( 3) z}{40} \ =\ \frac{7}{20}$
$\frac{16z\ -\ 15z}{40} \ =\ \frac{7}{20}$
$\frac{z}{40} \ =\ \frac{7}{20}$
$z\ =\ \frac{40\ \times \ 7}{20}$
$z\ =\ 2\ \times \ 7$
$\mathbf{z\ =\ 14}$
所以,$z$的值是14。
- 相关文章
- 验证性质:$x \times(y + z) = x \times y + x \times z$,其中:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 验证有理数加法的结合律,即$(x + y) + z = x + (y + z)$,其中:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 用$2z-1$除$^{3}+6z+4z^{5}$,所得商为a,余数为b。a和b的值是多少?A) $ a=2 z^{4}-z^{3}+z^{2}-\frac{z}{2}+\frac{13}{4} \ and \ b=-\frac{13}{4} $B) $ a=2 z^{4}+z^{3}+z^{2}+\frac{z}{2}+\frac{13}{4} \ and \ b=\frac{13}{4} $C) $ a=2 z^{4}-z^{3}+\frac{z^{2}}{2}+\frac{z}{4}+\frac{23}{8} \ and \ b=-\frac{23}{8} $D) $ a=2 z^{4}+z^{3}+\frac{z^{2}}{2}+\frac{z}{4}+\frac{23}{8} \ and \ b=+\frac{23}{8} $
- 验证性质:$x \times (y \times z) = (x \times y) \times z$,其中:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- 计算:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- 计算: $\frac{5}{8} + \frac{3}{4} - \frac{7}{2}$
- 计算$\frac{5}{7} \ +\ \frac{2}{3}$
- 计算: $( \frac{( 2^{5})^{2} \times 7^{3}}{8^{3} \times 7})$。
- 计算:$3\frac{1}{5} \div \frac{8}{27} - \frac{2}{21} \times \frac{7}{5}$。
- 因式分解下列表达式:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- 化简:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- 计算$\frac{5}{7}+\frac{2}{11}+\frac{-8}{7}+\frac{6}{11} $
- 计算 $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$。
- 计算下列乘积:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- 化简下列各题,并写成$\frac{a}{b}$的形式:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)