解下列方程组
$\frac{1}{2(x+2y)} +\frac{5}{3(3x-2y)}=\frac{-3}{2}$
$\frac{5}{4(x+2y)}-\frac{3}{5(3x-2y)}=\frac{61}{60}$
已知
已知方程组为
$\frac{1}{2(x+2y)} +\frac{5}{3(3x-2y)}=\frac{-3}{2}$
$\frac{5}{4(x+2y)}-\frac{3}{5(3x-2y)}=\frac{61}{60}$
解题步骤
我们需要解出已知的方程组。
解答
令 $\frac{1}{x+2y}=u$ 和 $\frac{1}{3x-2y}=v$
这意味着,已知方程组可以写成:
$\frac{1}{2(x+2y)} +\frac{5}{3(3x-2y)}=\frac{-3}{2}$
$\frac{u}{2}+\frac{5v}{3}=\frac{-3}{2}$
$\frac{3\times u+5v\times2}{6}=\frac{-3\times3}{2\times3}$
$\frac{3u+10v}{6}=\frac{-9}{6}$
$3u+10v=-9$ (两边分子相等)
$3u+10v+9=0$---(i)
$\frac{5}{4(x+2y)}-\frac{3}{5(3x-2y)}=\frac{61}{60}$
$\frac{5u}{4}-\frac{3v}{5}=\frac{61}{60}$
$\frac{5u\times5-3v\times4}{20}=\frac{61}{60}$
$\frac{25u-12v}{20}=\frac{61}{60}$
$60(25u-12v)=20(61)$
$3(25u-12v)=61$
$75u-36v=61$
$75u=61+36v$
$u=\frac{61+36v}{75}$---(ii)
将 $u=\frac{61+36v}{75}$ 代入方程(i),得到:
$3(\frac{61+36v}{75})+10v+9=0$
$\frac{61+36v}{25}=-10v-9$
$61+36v=25(-10v-9)$
$61+36v=-250v-225$
$36v+250v=-225-61$
$286v=-286$
$v=\frac{-286}{286}$
$v=-1$
将 $v=-1$ 代入方程(i),得到:
$3u+10(-1)+9=0$
$3u-10+9=0$
$3u-1=0$
$3u=1$
$u=\frac{1}{3}$
利用 $u$ 和 $v$ 的值,得到:
$\frac{1}{x+2y}=\frac{1}{3}$
$\Rightarrow x+2y=3$.....(iii)
$\frac{1}{3x-2y}=-1$
$\Rightarrow 3x-2y=-1$.....(iv)
将方程(iii)和(iv)相加,得到:
$x+2y+3x-2y=3+(-1)$
$4x=2$
$x=\frac{2}{4}$
$x=\frac{1}{2}$
将 $x$ 的值代入(iv),得到:
$3(\frac{1}{2})-2y=-1$
$2y=\frac{3}{2}+1$
$2y=\frac{3+1\times2}{2}$
$y=\frac{\frac{5}{2}}{2}$
$y=\frac{5}{4}$
因此,已知方程组的解为 $x=\frac{1}{2}$ 和 $y=\frac{5}{4}$。