Loading [MathJax]/jax/output/HTML-CSS/jax.js

验证:1+2+3++n=n(n+1)2,令 n=615


已知

1+2+3++n=n(n+1)2

求解

我们需要验证上述方程,令 n=615

n=6

左端

=1+2+3+4+5+6=21

右端

=6(6+1)2

=21

左端 = 右端

n=6

左端

=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120

右端

=15(15+1)2

=15(16)2

=120

左端 = 右端

因此已验证。

更新于: 2022 年 10 月 10 日

61 次浏览

开启您的 职业生涯

通过完成学习获得认证

开始
广告