在 NumPy 中对由“indices”指定的元素执行操作数的非缓冲就地操作


要在 Python NumPy 中对由“indices”指定的元素执行操作数的非缓冲就地操作,请使用 **numpy.ufunc.at()** 方法。

**numpy.ufunc** 包含逐元素对整个数组进行操作的函数。ufunc是用C语言编写的(为了速度),并通过NumPy的ufunc功能链接到Python。通用函数(或简称ufunc)是在元素级对ndarray进行操作的函数,支持数组广播、类型转换和许多其他标准特性。也就是说,ufunc是“矢量化”的函数包装器,它接受固定数量的特定输入并产生固定数量的特定输出。

步骤

首先,导入所需的库 -

import numpy as np

创建两个一维数组 -

arr1 = np.array([10, 20, 30, 40, 50])
arr2 = np.array([15, 25, 35, 45, 55])

显示数组 -

print("Array 1...
", arr1) print("
Array 2...
", arr2)

获取数组的类型 -

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

获取数组的维度 -

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

要在 Python NumPy 中对由“indices”指定的元素执行操作数的非缓冲就地操作,请使用 numpy.ufunc.at() 方法。

设置负值。np.negative.at() 用于将特定项目设置为负值。这里,第二个参数是索引,即用于索引第一个操作数的数组状索引对象或切片对象。如果第一个操作数具有多个维度,则索引可以是数组状索引对象或切片对象的元组。

np.negative.at(arr1, [0, 1])
print("
Set negative values...
", arr1)

设置正值。np.add.at() 用于将特定项目设置为增量值 -

np.add.at(arr2, [0, 1], 1)
print("
Set positive values...
", arr2)

示例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility

# Create two 1d arrays
arr1 = np.array([10, 20, 30, 40, 50])
arr2 = np.array([15, 25, 35, 45, 55])

# Display the arrays
print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # To perform unbuffered in place operation on operand for elements specified by ‘indices, use the numpy.ufunc.at() method in Python Numpy # Set negative values # The np.negative.at() is used to set specific items to negative values # Here, the 2nd parameter are indices i.e. Array like index object or slice object for indexing into # first operand. If first operand has multiple dimensions, indices can be a tuple of array like index objects or slice objects. np.negative.at(arr1, [0, 1]) print("
Set negative values...
", arr1) # Set positive values # The np.add.at() is used to set specific items to increment values np.add.at(arr2, [0, 1], 1) print("
Set positive values...
", arr2)

输出

Array 1...
[10 20 30 40 50]

Array 2...
[15 25 35 45 55]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
1

Our Array 2 Dimensions...
1

Set negative values...
[-10 -20 30 40 50]

Set positive values...
[16 26 35 45 55]

更新于: 2022年2月7日

141 次查看

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告

© . All rights reserved.