Python 中的客户流失预测


每个企业都依赖于客户的忠诚度。来自客户的重复业务是企业盈利的基础之一。因此,了解客户离开企业的原因非常重要。客户流失被称为客户流失率。通过观察过去的趋势,我们可以判断哪些因素会影响客户流失率,以及如何预测特定客户是否会离开企业。在本文中,我们将使用机器学习算法来研究客户流失率的过去趋势,然后判断哪些客户可能会流失。

数据准备

作为示例,本文将考虑电信客户流失率。源数据可在 Kaggle 上获取。下载数据的 URL 在下面的程序中提到。我们使用 Pandas 库将 csv 文件加载到 Python 程序中,并查看一些示例行。

示例

import pandas as pd
#Loading the Telco-Customer-Churn.csv dataset
#https://www.kaggle.com/blastchar/telco-customer-churn
datainput = pd.read_csv('E:\Telecom_customers.csv')
print("Given input data :\n",datainput)

输出

运行以上代码将得到以下结果:

Given input data :
        customerID      gender    SeniorCitizen   ...    MonthlyCharges    TotalCharges      Churn
0       7590-VHVEG      Female                0   ...             29.85           29.85         No
1       5575-GNVDE        Male                0   ...             56.95          1889.5         No
2       3668-QPYBK        Male                0   ...             53.85          108.15        Yes
3       7795-CFOCW        Male                0   ...             42.30         1840.75         No
4       9237-HQITU      Female                0   ...             70.70          151.65        Yes
...            ...         ...              ...   ...               ...             ...        ...
7038    6840-RESVB        Male                0   ...             84.80          1990.5        No
7039    2234-XADUH      Female                0   ...            103.20          7362.9        No
7040    4801-JZAZL      Female                0   ...             29.60          346.45        No
7041    8361-LTMKD        Male                1   ...             74.40           306.6       Yes
7042    3186-AJIEK        Male                0   ...            105.65          6844.5        No

[7043 rows x 21 columns]

研究现有模式

接下来,我们研究数据集以查找流失发生的现有模式。我们还删除一些对条件没有影响的数据列。例如,客户 ID 列不会影响客户是否离开,因此我们使用 drop 方法删除此类列。然后,我们绘制一个图表,显示给定数据集中流失的百分比。

示例 2

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams

#Loading the Telco-Customer-Churn.csv dataset
#https://www.kaggle.com/blastchar/telco-customer-churn
datainput = pd.read_csv('E:\Telecom_customers.csv')
print("Given input data :\n",datainput)

#Dropping columns
datainput.drop(['customerID'], axis=1, inplace=True)
datainput.pop('TotalCharges')
datainput['OnlineBackup'].unique()

data = datainput['Churn'].value_counts(sort = True)
chroma = ["#BDFCC9","#FFDEAD"]
rcParams['figure.figsize'] = 9,9
explode = [0.2,0.2]
plt.pie(data, explode=explode, colors=chroma, autopct='%1.1f%%', shadow=True, startangle=180,)
plt.title('Percentage of Churn in the given Data')
plt.show()

输出

运行以上代码将得到以下结果:


数据预处理

为了使数据能够被机器学习算法使用,我们对所有字段进行标记。我们还将文本值转换为数字标记。例如,性别列中的值将更改为 0 和 1,而不是男性和女性。这有助于在计算和算法中使用这些字段,这些计算和算法将评估这些字段对流失值的影响。我们使用 sklearn 中的 LabelEncoder 方法。

示例 3

import pandas as pd
from sklearn import preprocessing

label_encoder = preprocessing.LabelEncoder()
datainput['gender'] = label_encoder.fit_transform(datainput['gender'])
datainput['Partner'] = label_encoder.fit_transform(datainput['Partner'])
datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents'])
datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService'])
datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines'])
datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService'])
datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity'])
datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup'])
datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection'])
datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport'])
datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV'])
datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies'])
datainput['Contract'] = label_encoder.fit_transform(datainput['Contract'])
datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling'])
datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod'])
datainput['Churn'] = label_encoder.fit_transform(datainput['Churn'])
print("input data after label encoder :\n",datainput)

#separating features(X) and label(y)
datainput["Churn"] = datainput["Churn"].astype(int)
y = datainput["Churn"].values
X = datainput.drop(labels = ["Churn"],axis = 1)
print("\nseparated X and y :")
print("y -",y)
print("X -",X)

输出

运行以上代码将得到以下结果:

input data after label encoder
      customerID       gender    SeniorCitizen ... MonthlyCharges TotalCharges    Churn
0    7590-VHVEG          0                   0 ... 29.85          29.85               0
1    5575-GNVDE          1                   0 ... 56.95          1889.5              0
2    3668-QPYBK          1                   0 ... 53.85          108.15              1
3    7795-CFOCW          1                   0 ... 42.30          1840.75             0
4    9237-HQITU          0                   0 ... 70.70          151.65              1
... ... ... ... ... ... ... ...
7038    6840-RESVB       1                   0 ...    84.80        1990.5             0
7039    2234-XADUH       0                   0 ...    103.20       7362.9             0
7040    4801-JZAZL       0                   0 ...    29.60        346.45             0
7041    8361-LTMKD       1                   1 ...    74.40         306.6             1
7042    3186-AJIEK       1                   0 ...    105.65       6844.5             0

[7043 rows x 21 columns]

separated X and y :
y - [0 0 1 ... 0 1 0]
X -       customerID       gender ...       MonthlyCharges       TotalCharges
0          7590-VHVEG          0 ...             29.85                29.85
1          5575-GNVDE          1 ...             56.95              1889.5
2          3668-QPYBK          1 ...             53.85               108.15
3          7795-CFOCW          1 ...             42.30              1840.75
4          9237-HQITU          0 ...             70.70               151.65
...          ...             ... ...             ...                   ...
7038       6840-RESVB          1 ...             84.80               1990.5
7039       2234-XADUH          0 ...             103.20              7362.9
7040       4801-JZAZL          0 ...             29.60                346.45
7041       8361-LTMKD          1 ...             74.40                306.6
7042       3186-AJIEK          1 ...             105.65               6844.5

[7043 rows x 20 columns]

训练和测试数据

现在我们将数据集分成两部分。一个是用于训练,另一个是用于测试。test_size 参数用于决定将有多少百分比的数据集仅用于测试。此练习将帮助我们对正在创建的模型更有信心。然后我们应用逻辑回归算法并找出预测值。

示例

import pandas as pd
import warnings
warnings.filterwarnings("ignore")

from sklearn.linear_model import LogisticRegression

#Loading the Telco-Customer-Churn.csv dataset with pandas
datainput = pd.read_csv('E:\Telecom_customers.csv')

datainput.drop(['customerID'], axis=1, inplace=True)
datainput.pop('TotalCharges')
datainput['OnlineBackup'].unique()

#LabelEncoder()
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
datainput['gender'] = label_encoder.fit_transform(datainput['gender'])
datainput['Partner'] = label_encoder.fit_transform(datainput['Partner'])
datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents'])
datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService'])
datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines'])
datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService'])
datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity'])
datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup'])
datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection'])
datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport'])
datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV'])
datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies'])
datainput['Contract'] = label_encoder.fit_transform(datainput['Contract'])
datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling'])
datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod'])
datainput['Churn'] = label_encoder.fit_transform(datainput['Churn'])
#print("input data after label encoder :\n",datainput)

#separating features(X) and label(y)
datainput["Churn"] = datainput["Churn"].astype(int)
Y = datainput["Churn"].values
X = datainput.drop(labels = ["Churn"],axis = 1)

#train_test_split method
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

#LogisticRegression
classifier=LogisticRegression()
classifier.fit(X_train,Y_train)
Y_pred=classifier.predict(X_test)
print("\npredicted values :\n",Y_pred)

输出

运行以上代码将得到以下结果:

predicted values :
[0 0 1 ... 0 1 0]

查找评估参数

一旦以上步骤中的准确度水平达到可接受的水平,我们就通过查找不同的参数来进一步评估模型。我们使用准确率和混淆矩阵作为参数来判断此模型的行为有多准确。较高的准确率值表明该模型更适合。类似地,混淆矩阵显示真阳性、真阴性、假阳性和假阴性的矩阵。与假值相比,真值的百分比越高,表明模型越好。

示例

import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import confusion_matrix

#Loading the Telco-Customer-Churn.csv dataset with pandas
datainput = pd.read_csv('E:\Telecom_customers.csv')

datainput.drop(['customerID'], axis=1, inplace=True)
datainput.pop('TotalCharges')
datainput['OnlineBackup'].unique()

#LabelEncoder()
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
datainput['gender'] = label_encoder.fit_transform(datainput['gender'])
datainput['Partner'] = label_encoder.fit_transform(datainput['Partner'])
datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents'])
datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService'])
datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines'])
datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService'])
datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity'])
datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup'])
datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection'])
datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport'])
datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV'])
datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies'])
datainput['Contract'] = label_encoder.fit_transform(datainput['Contract'])
datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling'])
datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod'])
datainput['Churn'] = label_encoder.fit_transform(datainput['Churn'])
#print("input data after label encoder :\n",datainput)

#separating features(X) and label(y)
datainput["Churn"] = datainput["Churn"].astype(int)
Y = datainput["Churn"].values
X = datainput.drop(labels = ["Churn"],axis = 1)

#train_test_split method
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

#LogisticRegression
classifier=LogisticRegression()
classifier.fit(X_train,Y_train)
Y_pred=classifier.predict(X_test)

#Accuracy
LR = metrics.accuracy_score(Y_test, Y_pred) * 100
print("\nThe accuracy score using the LR is -> ",LR)

#confusion matrix
cm=confusion_matrix(Y_test,Y_pred)
print("\nconfusion matrix : \n",cm)

输出

运行以上代码将得到以下结果:

The accuracy score using the LR is -> 80.8374733853797
confusion matrix :
   [[928 109]
   [161 211]]

变量权重

接下来,我们判断每个字段或变量如何影响流失值。这将帮助我们确定对流失影响较大的特定变量,并尝试处理这些变量以防止客户流失。为此,我们将分类器中的系数设置为零,并获得每个变量的权重。

示例

import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression

#Loading the dataset with pandas
datainput = pd.read_csv('E:\Telecom_customers.csv')

datainput.drop(['customerID'], axis=1, inplace=True)
datainput.pop('TotalCharges')
datainput['OnlineBackup'].unique()

#LabelEncoder()
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
datainput['gender'] = label_encoder.fit_transform(datainput['gender'])
datainput['Partner'] = label_encoder.fit_transform(datainput['Partner'])
datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents'])
datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService'])
datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines'])
datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService'])
datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity'])
datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup'])
datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection'])
datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport'])
datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV'])
datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies'])
datainput['Contract'] = label_encoder.fit_transform(datainput['Contract'])
datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling'])
datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod'])
datainput['Churn'] = label_encoder.fit_transform(datainput['Churn'])
#print("input data after label encoder :\n",datainput)

#separating features(X) and label(y)
datainput["Churn"] = datainput["Churn"].astype(int)
Y = datainput["Churn"].values
X = datainput.drop(labels = ["Churn"],axis = 1)
#
#train_test_split method
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)
#
#LogisticRegression
classifier=LogisticRegression()
classifier.fit(X_train,Y_train)
Y_pred=classifier.predict(X_test)

#weights of all the variables
wt = pd.Series(classifier.coef_[0], index=X.columns.values)
print("\nweight of all the variables :")
print(wt.sort_values(ascending=False))

输出

运行以上代码将得到以下结果:

weight of all the variables :
PaperlessBilling     0.389379
SeniorCitizen        0.246504
InternetService      0.209283
Partner              0.067855
StreamingMovies      0.054309
MultipleLines        0.042330
PaymentMethod        0.039134
MonthlyCharges       0.027180
StreamingTV         -0.008606
gender              -0.029547
tenure              -0.034668
DeviceProtection    -0.052690
OnlineBackup        -0.143625
Dependents          -0.209667
OnlineSecurity      -0.245952
TechSupport         -0.254740
Contract            -0.729557
PhoneService        -0.950555
dtype: float64

更新于:2020年2月4日

浏览量:512

启动您的职业生涯

通过完成课程获得认证

开始
广告