Python 中给定矩阵中找出最长递增路径的程序


假设我们有一个二维矩阵,我们必须找到最长严格递增路径的长度。要遍历路径,我们可以上下左右移动,不能斜着移动。

所以,如果输入如下

246
157
339

那么输出将是 6,因为最长路径是 [1, 2, 4, 6, 7, 9]

为了解决这个问题,我们将遵循以下步骤 -

n := row count of matrix , m := column count of matrix
moves := a list of pairs to move up, down, left and right [[1, 0], [-1, 0], [0, 1], [0, -1]]
Define a function dp() . This will take y, x
if x and y are in range of matrix, then
   return 0
currVal := matrix[y, x]
res := 0
for each d in moves, do
   (dy, dx) := d
   (newY, newX) := (y + dy, x + dx)
      if newY and newX are in range of matrix and matrix[newY, newX] > currVal, then
         res := maximum of res and dp(newY, newX)
return res + 1
From the main method do the following:
result := 0
for i in range 0 to n - 1, do
   for j in range 0 to m - 1, do
      result := maximum of result and dp(i, j)
return result

示例 (Python)

让我们看一下以下实现,以获得更好的理解 -

 在线演示

class Solution:
   def solve(self, matrix):
      n, m = len(matrix), len(matrix[0])
      moves = [[1, 0], [-1, 0], [0, 1], [0, -1]]
      def dp(y, x):
         if y < 0 or y >= n or x < 0 or x >= m:
            return 0
         currVal = matrix[y][x]
         res = 0
         for d in moves:
            dy, dx = d
            newY, newX = y + dy, x + dx
            if (newY >= 0 and newY < n and newX >= 0 and newX < m and matrix[newY][newX] > currVal):
               res = max(res, dp(newY, newX))
         return res + 1
      result = 0
      for i in range(n):
         for j in range(m):
            result = max(result, dp(i, j))
      return result
ob = Solution()
matrix = [
   [2, 4, 6],
   [1, 5, 7],
   [3, 3, 9]
]
print(ob.solve(matrix))

输入

[ [2, 4, 6], [1, 5, 7], [3, 3, 9] ]

输出

6

更新日期: 12-12-2020

105 次浏览

开启您的职业生涯

通过完成课程获得认证

立即开始
广告