Python Pandas - 从 DateTimeIndex 创建 DataFrame 并覆盖结果列的名称
要从 DateTimeIndex 创建 DataFrame,请使用 **datetimeindex.to_frame()**。我们使用 name 参数来覆盖结果列的 **名称**。
首先,导入所需的库:
import pandas as pd
创建一个周期为 5 且频率为 S(秒)的 DatetimeIndex:
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')显示 DateTimeIndex:
print("DateTimeIndex...\n", datetimeindex)
使用 'False' 参数,原始索引不会设置在返回的 DataFrame 中。为了覆盖结果列的名称,我们使用了 'name' 参数:
print("\nDateTimeIndex to DataFrame...\n",
datetimeindex.to_frame(index=False, name = 'DateTimeData'))示例
以下是代码:
import pandas as pd
# DatetimeIndex with period 5 and frequency as S i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')
# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)
# display DateTimeIndex frequency
print("\nDateTimeIndex frequency...\n", datetimeindex.freq)
# Create a DataFrame from DateTimeIndex
# The original index isn't set in the returned DataFrame using the 'False' parameter
# To override the name of the resulting column, we have used the 'name' parameter
print("\nDateTimeIndex to DataFrame...\n",
datetimeindex.to_frame(index=False, name = 'DateTimeData'))输出
这将生成以下代码:
DateTimeIndex... DatetimeIndex(['2021-10-18 07:20:32.261811624+10:30', '2021-10-18 07:21:12.261811624+10:30', '2021-10-18 07:21:52.261811624+10:30', '2021-10-18 07:22:32.261811624+10:30', '2021-10-18 07:23:12.261811624+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='40S') DateTimeIndex frequency... <40 * Seconds> DateTimeIndex to DataFrame... DateTimeData 0 2021-10-18 07:20:32.261811624+10:30 1 2021-10-18 07:21:12.261811624+10:30 2 2021-10-18 07:21:52.261811624+10:30 3 2021-10-18 07:22:32.261811624+10:30 4 2021-10-18 07:23:12.261811624+10:30
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP