在 Numpy 中沿指定轴减少多维数组


要减少多维数组,请在 Python Numpy 中使用 **np.ufunc.reduce()** 方法。这里,我们使用 **multiply.reduce()** 将其减少到元素的乘积。轴是使用“axis”参数设置的。执行约简的轴或轴

**numpy.ufunc** 具有对整个数组逐元素操作的功能。ufunc是用 C(为了速度)编写的,并通过 NumPy 的 ufunc 功能链接到 Python。通用函数(或简称 ufunc)是在逐元素方式操作 ndarrays 的函数,支持数组广播、类型转换和几个其他标准功能。也就是说,ufunc 是一个“矢量化”的函数包装器,它接受固定数量的特定输入并产生固定数量的特定输出。

步骤

首先,导入所需的库 -

import numpy as np

创建一个多维数组 -

arr = np.arange(27).reshape((3,3,3))

显示数组 -

print("Array...
", arr)

获取数组的类型 -

print("
Our Array type...
", arr.dtype)

获取数组的维度 -

print("
Our Array Dimensions...
",arr.ndim)

要减少多维数组,请在 Python Numpy 中使用 np.ufunc.reduce() 方法。这里,我们使用 multiply.reduce() 将其减少到元素的乘积。轴是使用“axis”参数设置的。执行约简的轴或轴 -

print("
Result (multiplication)...
",np.multiply.reduce(arr, axis = 0))

要减少多维数组,请在 Python Numpy 中使用 np.ufunc.reduce() 方法。这里,我们使用 add.reduce() 将其减少到元素的加和。轴是使用“axis”参数设置的。执行约简的轴或轴 -

print("
Result (addition)...
",np.add.reduce(arr, axis = 0))

示例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility

# Create a multi-dimensional array
arr = np.arange(27).reshape((3,3,3))

# Display the array
print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # To reduce a multi-dimensional array, use the np.ufunc.reduce() method in Python Numpy # Here, we have used multiply.reduce() to reduce it to the multiplication of elements elements # The axis is set using the "axis" parameter # Axis or axes along which a reduction is performed print("
Result (multiplication)...
",np.multiply.reduce(arr, axis = 0)) # To reduce a multi-dimensional array, use the np.ufunc.reduce() method in Python Numpy # Here, we have used add.reduce() to reduce it to the addition of elements # The axis is set using the "axis" parameter # Axis or axes along which a reduction is performed print("
Result (addition)...
",np.add.reduce(arr, axis = 0))

输出

Array...
[[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]]

[[ 9 10 11]
[12 13 14]
[15 16 17]]

[[18 19 20]
[21 22 23]
[24 25 26]]]

Our Array type...
int64

Our Array Dimensions...
3

Result (multiplication)...
[[ 0 190 440]
[ 756 1144 1610]
[2160 2800 3536]]

Result (addition)...
[[27 30 33]
[36 39 42]
[45 48 51]]

更新于: 2022-02-07

177 次查看

启动你的 职业生涯

通过完成课程获得认证

开始
广告