在Numpy中沿轴1对多维数组应用累加
要累加对所有元素应用运算符的结果,请使用Python Numpy中的**numpy.accumulate()**方法。对于多维数组,累加仅沿一个轴应用。我们将沿轴1应用。
**numpy.ufunc**具有对整个数组逐元素操作的函数。ufunc是用C语言编写的(为了速度)并与NumPy的ufunc工具链接到Python。通用函数(简称ufunc)是一个逐元素操作ndarray的函数,支持数组广播、类型转换和几个其他标准特性。也就是说,ufunc是函数的“矢量化”包装器,它接受固定数量的特定输入并产生固定数量的特定输出。
步骤
首先,导入所需的库:
import numpy as np
创建一个二维数组。numpy.eye()返回一个二维数组,对角线为1,其他位置为0:
arr = np.eye(3)
显示数组:
print("Array...
", arr)获取数组的类型:
print("
Our Array type...
", arr.dtype)
获取数组的维度:
print("
Our Array Dimensions...
",arr.ndim)要累加对所有元素应用运算符的结果,请使用Python Numpy中的numpy.accumulate()方法。对于多维数组,累加仅沿一个轴应用:
添加累加:沿轴1(列)累加:
print("
Add accumulate...
",np.add.accumulate(arr, 1))
乘法累加:
print("
Multiply accumulate...
",np.multiply.accumulate(arr, 1))示例
import numpy as np
import numpy.ma as ma
# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility
# Create a 2d array
# The numpy.eye() returns a 2-D array with 1’s as the diagonal and 0’s elsewhere.
arr = np.eye(3)
# Display the array
print("Array...
", arr)
# Get the type of the array
print("
Our Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Our Array Dimensions...
",arr.ndim)
# To Accumulate the result of applying the operator to all elements, use the numpy.accumulate() method in Python Numpy
# For a multi-dimensional array, accumulate is applied along only one axis
# Add accumulate
# Accumulate along axis 1 (columns)
# Add accumulate
print("
Add accumulate...
",np.add.accumulate(arr, 1))
# Multiply accumulate
print("
Multiply accumulate...
",np.multiply.accumulate(arr, 1))输出
Array... [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] Our Array type... float64 Our Array Dimensions... 2 Add accumulate... [[1. 1. 1.] [0. 1. 1.] [0. 0. 1.]] Multiply accumulate... [[1. 0. 0.] [0. 0. 0.] [0. 0. 0.]]
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP