NumPy中多维数组的降维和元素相加
要减少多维数组,请在Python NumPy中使用**np.ufunc.reduce()**方法。在这里,我们使用**add.reduce()**将其简化为元素的加法。
**numpy.ufunc**具有逐元素操作整个数组的函数。ufunc是用C语言编写的(为了速度),并使用NumPy的ufunc工具链接到Python。通用函数(简称ufunc)是在逐元素的基础上操作ndarray的函数,支持数组广播、类型转换以及其他一些标准功能。也就是说,ufunc是“矢量化”的包装器,用于一个函数,该函数采用固定数量的特定输入并产生固定数量的特定输出。
步骤
首先,导入所需的库:
import numpy as np
创建一个多维数组:
arr = np.arange(27).reshape((3,3,3))
显示数组:
print("Array...", arr)
获取数组的类型:
print("Our Array type...", arr.dtype)
获取数组的维度:
print("Our Array Dimensions...",arr.ndim)
要减少多维数组,请在Python NumPy中使用np.ufunc.reduce()方法。在这里,我们使用add.reduce()将其简化为元素的加法:
print("Result (addition)...",np.add.reduce(arr))
示例
import numpy as np # The numpy.ufunc has functions that operate element by element on whole arrays. # ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility # Create a multi-dimensional array arr = np.arange(27).reshape((3,3,3)) # Display the array print("Array...", arr) # Get the type of the array print("Our Array type...", arr.dtype) # Get the dimensions of the Array print("Our Array Dimensions...",arr.ndim) # To reduce a multi-dimensional array, use the np.ufunc.reduce() method in Python Numpy # Here, we have used add.reduce() to reduce it to the addition of elements print("Result (addition)...",np.add.reduce(arr))
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
输出
Array... [[[ 0 1 2] [ 3 4 5] [ 6 7 8]] [[ 9 10 11] [12 13 14] [15 16 17]] [[18 19 20] [21 22 23] [24 25 26]]] Our Array type... int64 Our Array Dimensions... 3 Result (addition)... [[27 30 33] [36 39 42] [45 48 51]]
广告