Numpy中多维数组的降维以及沿负轴相加


要对多维数组进行降维,可以使用Python Numpy中的**np.ufunc.reduce()**方法。这里我们使用**multiply.reduce()**将其降维为元素的乘积。“**axis**”参数用于设置轴。轴是执行降维的轴。负轴从最后一个轴到第一个轴进行计数。

通用函数(简称ufunc)是在逐元素的基础上对ndarray进行运算的函数,支持数组广播、类型转换以及其他一些标准特性。也就是说,ufunc是对一个函数的“矢量化”封装,该函数接受固定数量的特定输入并产生固定数量的特定输出。

步骤

首先,导入所需的库:

import numpy as np

创建一个多维数组:

arr = np.arange(27).reshape((3,3,3))

显示数组:

print("Array...
", arr)

获取数组的类型:

print("
Our Array type...
", arr.dtype)

获取数组的维度:

print("
Our Array Dimensions...
",arr.ndim)

要对多维数组进行降维,可以使用Python Numpy中的np.ufunc.reduce()方法。这里我们使用multiply.reduce()将其降维为元素的乘积。“axis”参数用于设置轴。轴是执行降维的轴。负轴从最后一个轴到第一个轴进行计数:

print("
Result along specific axis (multiplication)...
",np.multiply.reduce(arr, axis = -1))

示例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility

# Create a multi-dimensional array
arr = np.arange(27).reshape((3,3,3))

# Display the array
print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # To reduce a multi-dimensional array, use the np.ufunc.reduce() method in Python Numpy # Here, we have used multiply.reduce() to reduce it to the multiplication of elements # The axis is set using the "axis" parameter # Axis or axes along which a reduction is performed # The negative axis counts from the last to the first axis print("
Result along specific axis (multiplication)...
",np.multiply.reduce(arr, axis = -1))

输出

Array...
[[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]]

[[ 9 10 11]
[12 13 14]
[15 16 17]]

[[18 19 20]
[21 22 23]
[24 25 26]]]

Our Array type...
int64

Our Array Dimensions...
3

Result along specific axis (multiplication)...
[[ 0 60 336]
[ 990 2184 4080]
[ 6840 10626 15600]]

更新于:2022年2月7日

111 次查看

开启您的职业生涯

完成课程获得认证

开始学习
广告