在NumPy中约简多维数组并在轴0上乘法元素
要约简多维数组,请在Python NumPy中使用 **np.ufunc.reduce()** 方法。这里,我们使用 **multiply.reduce()** 将其约简为元素的乘积。轴使用“axis”参数设置。沿其执行约简的轴。
通用函数(简称ufunc)是在逐元素基础上操作ndarray的函数,支持数组广播、类型转换以及其他一些标准功能。
也就是说,ufunc 是对函数的“矢量化”包装器,该函数采用固定数量的特定输入并产生固定数量的特定输出。
步骤
首先,导入所需的库:
import numpy as np
创建一个多维数组:
arr = np.arange(27).reshape((3,3,3))
显示数组:
print("Array...
", arr)
获取数组的类型:
print("
Our Array type...
", arr.dtype)
获取数组的维度:
print("
Our Array Dimensions...
",arr.ndim)
要约简多维数组,请在Python NumPy中使用 np.ufunc.reduce() 方法。这里,我们使用 multiply.reduce() 将其约简为元素的乘积。轴使用“axis”参数设置。沿其执行约简的轴。
print("
Result along axis 0 (multiplication)...
",np.multiply.reduce(arr, axis = 0))
示例
import numpy as np # The numpy.ufunc has functions that operate element by element on whole arrays. # ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility # Create a multi-dimensional array arr = np.arange(27).reshape((3,3,3)) # Display the array print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # To reduce a multi-dimensional array, use the np.ufunc.reduce() method in Python Numpy # Here, we have used multiply.reduce() to reduce it to the multiplication of elements # The axis is set using the "axis" parameter # Axis or axes along which a reduction is performed print("
Result along axis 0 (multiplication)...
",np.multiply.reduce(arr, axis = 0))
输出
Array... [[[ 0 1 2] [ 3 4 5] [ 6 7 8]] [[ 9 10 11] [12 13 14] [15 16 17]] [[18 19 20] [21 22 23] [24 25 26]]] Our Array type... int64 Our Array Dimensions... 3 Result along axis 0 (multiplication)... [[ 0 190 440] [ 756 1144 1610] [2160 2800 3536]]
广告