使用Python返回两个一维序列的离散线性卷积


要返回两个一维序列的离散线性卷积,请在Python Numpy中使用numpy.convolve()方法。卷积运算符经常出现在信号处理中,它模拟线性时不变系统对信号的影响。在概率论中,两个独立随机变量的和服从其各自分布卷积的分布。如果v比a长,则在计算之前交换数组。

该方法返回a和v的离散线性卷积。第一个参数a (N,)是第一个一维输入数组。第二个参数v (M,)是第二个一维输入数组。第三个参数mode是可选的,其值为'full'、'valid'、'same'。模式'valid'返回长度为max(M, N) - min(M, N) + 1的输出。卷积积只给出信号完全重叠的点。信号边界外的值没有影响。

默认模式为'full'。这将返回每个重叠点的卷积,输出形状为(N+M-1,)。在卷积的端点处,信号不会完全重叠,可能会看到边界效应。

步骤

首先,导入所需的库:

import numpy as np

使用array()方法创建两个numpy一维数组:

arr1 = np.array([1, 2, 3])
arr2 = np.array([0, 1, 0.5])

显示数组:

print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

检查两个数组的维度:

print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

检查两个数组的形状:

print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

要返回两个一维序列的离散线性卷积,请在Python Numpy中使用numpy.convolve()方法:

print("\nResult....\n",np.convolve(arr1, arr2, mode = 'full' ))

示例

import numpy as np

# Creating two numpy One-Dimensional array using the array() method
arr1 = np.array([1, 2, 3])
arr2 = np.array([0, 1, 0.5])

# Display the arrays
print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

# To return the discrete linear convolution of two one-dimensional sequences, use the numpy.convolve() method in Python Numpy
print("\nResult....\n",np.convolve(arr1, arr2, mode = 'full' ))

输出

Array1...
[1 2 3]

Array2...
[0. 1. 0.5]

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(3,)

Shape of Array2...
(3,)

Result....
[0. 1. 2.5 4. 1.5]

更新于:2022年2月28日

651 次浏览

启动你的职业生涯

完成课程获得认证

开始学习
广告