返回 NumPy 中两个掩码数组的内积
要返回两个掩码数组的内积,请在 Python NumPy 中使用 **ma.inner()** 方法。对于一维数组(不进行复共轭),它是向量的普通内积;在更高维度上,它是最后一个轴上的求和积。
out 参数表明,如果两个数组都是标量或都是一维数组,则返回标量;否则返回数组。out.shape = (*a.shape[:-1], *b.shape[:-1])。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值都不无效,要么是布尔数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
创建数组 1,一个使用 numpy.arange() 方法创建的包含整数元素的 3x3 数组 -
arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype)
创建掩码数组 1 -
arr1 = ma.array(arr1)
掩码数组 1 -
arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked
显示掩码数组 1 -
print("
Masked Array1...
",arr1)
创建数组 2,一个使用 numpy.arange() 方法创建的包含整数元素的 3x3 数组 -
arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)
创建掩码数组 2 -
arr2 = ma.array(arr2)
掩码数组 2 -
arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked
显示掩码数组 2 -
print("
Masked Array2...
",arr2)
要返回两个掩码数组的内积,请在 Python NumPy 中使用 ma.inner() 方法。对于一维数组(不进行复共轭),它是向量的普通内积;在更高维度上,它是最后一个轴上的求和积
print("
Result of inner product...
",np.ma.inner(arr1, arr2))
示例
# Python ma.MaskedArray - Return the inner product of two masked arrays import numpy as np import numpy.ma as ma # Array 1 # Creating a 3x3 array with int elements using the numpy.arange() method arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To return the inner product of two masked arrays, use the ma.inner() method in Python Numpy # Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. print("
Result of inner product...
",np.ma.inner(arr1, arr2))
输出
Array1... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array1... [[0 -- 2] [3 -- 5] [6 7 8]] Array2... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array2... [[0 1 2] [3 4 5] [6 -- --]] Result of inner product... [[ 4 10 0] [10 34 18] [23 86 36]]
广告