强连通图
在一个有向图中,如果一个连通分量中每对顶点之间都有路径,则称该图是强连通图。
要解决此算法,首先使用深度优先搜索 (DFS) 算法来获取每个顶点的完成时间,现在查找转置图的完成时间,然后按拓扑顺序按降序对顶点进行排序。
输入和输出
Input: Adjacency matrix of the graph. 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 Output: Following are strongly connected components in given graph: 0 1 2 3 4
算法
traverse(graph, start, visited)
输入:将要遍历的图、起始顶点和已访问节点的标记。
输出:使用深度优先搜索技术遍历每个节点并显示节点。
Begin mark start as visited for all vertices v connected with start, do if v is not visited, then traverse(graph, v, visited) done End
topoSort(u, visited, stack)
输入 − 起始节点、已访问顶点的标记、堆栈。
输出 −对图进行排序时填充堆栈。
Begin mark u as visited for all node v, connected with u, do if v is not visited, then topoSort(v, visited, stack) done push u into the stack End
getStrongConComponents(graph)
输入:给定的图。
输出:全部强连通分量。
Begin initially all nodes are unvisited for all vertex i in the graph, do if i is not visited, then topoSort(i, vis, stack) done make all nodes unvisited again transGraph := transpose of given graph while stack is not empty, do pop node from stack and take into v if v is not visited, then traverse(transGraph, v, visited) done End
举例
#include <iostream> #include <stack> #define NODE 5 using namespace std; int graph[NODE][NODE] = { {0, 0, 1, 1, 0}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 1}, {0, 0, 0, 0, 0} }; int transGraph[NODE][NODE]; void transpose() { //transpose the graph and store to transGraph for(int i = 0; i<NODE; i++) for(int j = 0; j<NODE; j++) transGraph[i][j] = graph[j][i]; } void traverse(int g[NODE][NODE], int u, bool visited[]) { visited[u] = true; //mark v as visited cout << u << " "; for(int v = 0; v<NODE; v++) { if(g[u][v]) { if(!visited[v]) traverse(g, v, visited); } } } void topoSort(int u, bool visited[], stack<int>&stk) { visited[u] = true; //set as the node v is visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { //for allvertices v adjacent to u if(!visited[v]) topoSort(v, visited, stk); } } stk.push(u); //push starting vertex into the stack } void getStrongConComponents() { stack<int> stk; bool vis[NODE]; for(int i = 0; i<NODE; i++) vis[i] = false; //initially all nodes are unvisited for(int i = 0; i<NODE; i++) if(!vis[i]) //when node is not visited topoSort(i, vis, stk); for(int i = 0; i<NODE; i++) vis[i] = false; //make all nodes are unvisited for traversal transpose(); //make reversed graph while(!stk.empty()) { //when stack contains element, process in topological order int v = stk.top(); stk.pop(); if(!vis[v]) { traverse(transGraph, v, vis); cout << endl; } } } int main() { cout << "Following are strongly connected components in given graph: "<<endl; getStrongConComponents(); }
输出
Following are strongly connected components in given graph: 0 1 2 3 4
广告