使用 OpenCV 在 Python 中对图像进行漫画化
目前市面上有很多专业漫画化应用程序,但它们中的大多数都不是免费软件。为了获得基本的漫画效果,我们只需要双边滤波器和一些边缘检测机制。双边滤波器会减少调色板,这是漫画效果所必需的,而边缘检测是为了生成粗体轮廓。
我们将使用 openCV python 库将 RGB 彩色图像转换为漫画图像。
算法
首先应用双边滤波器以减少图像的调色板。
然后将实际图像转换为灰度。
现在对灰度图像应用中值模糊以减少图像噪点。
使用自适应阈值从灰度图像创建边缘蒙版。
最后将步骤 1 生成的彩色图像与步骤 4 生成的边缘蒙版组合。
原始图像
示例
#step 1 #Use bilateral filter for edge-aware smoothing. import cv2 num_down = 2 # number of downsampling steps num_bilateral = 7 # number of bilateral filtering steps img_rgb = cv2.imread("myCat.jpg") # downsample image using Gaussian pyramid img_color = img_rgb for _ in range(num_down): img_color = cv2.pyrDown(img_color) # repeatedly apply small bilateral filter instead of # applying one large filter for _ in range(num_bilateral): img_color = cv2.bilateralFilter(img_color, d=9, sigmaColor=9, sigmaSpace=7) # upsample image to original size for _ in range(num_down): img_color = cv2.pyrUp(img_color) #STEP 2 & 3 #Use median filter to reduce noise # convert to grayscale and apply median blur img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) img_blur = cv2.medianBlur(img_gray, 7) #STEP 4 #Use adaptive thresholding to create an edge mask # detect and enhance edges img_edge = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize=9, C=2) # Step 5 # Combine color image with edge mask & display picture # convert back to color, bit-AND with color image img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB) img_cartoon = cv2.bitwise_and(img_color, img_edge) # display cv2.imshow("myCat_cartoon", img_cartoon)
结果
广告