1K+ 次浏览
在计算理论 (TOC) 中,有限自动机 (FA) 表示如下:FA 的组成部分有限自动机的不同组成部分如下:输入磁带输入磁带具有左端并延伸到右端。它被分成多个块,每个块包含来自输入字母表 Σ 的单个符号。磁带的结束块在左端包含结束标记₵,在右端包含结束标记$。结束标记的缺失表示磁带是无限长的。两个结束标记之间从左到右的符号序列在…… 阅读更多
4K+ 次浏览
问题将输入字符串向右移动一个位置,并设计一个可以在∑ = {0, 1}上执行右移的图灵机 (TM)。解决方案参考下面给出的算法设计 TM:步骤 1 - 从初始字符移动到最后一个字符的右侧。步骤 2 - 如果字符是“0”,则将其替换为“B”,并向右移动一步以将紧邻的“B”替换为“0”。步骤 3 - 如果字符是“1”,则将其替换为“B”,并向右移动一步以将紧邻的“B”替换为“1”。步骤 4 - 在按上述方式处理后,向左移动一个…… 阅读更多
3K+ 次浏览
图灵机比有限自动机和下推自动机都强大。这些机器与我们制造过的任何计算机一样强大。图灵机的形式化定义图灵机可以形式化地描述为七元组 (Q, X, Σ, δ, q0, B, F) 其中,Q 是有限状态集。X 是磁带字母表Σ 是输入字母表δ 是转移函数:δ:QxX→QxXx{左移,右移}q0 是初始状态B 是空格符号F 是最终状态。图灵机 (TM) 是一种数学模型,它由一条无限长的磁带组成,该磁带被分成多个单元格,用于输入…… 阅读更多
我们的目标是设计一个图灵机 (TM) 来反转由字母表 {a, b} 上的 a 和 b 组成的字符串。示例输入 - aabbab 输出 - babbaa 算法步骤 1:移动到最后一个符号,将 x 替换为 a 或将 x 替换为 b,然后向右移动以将相应的 B 转换为“a”或“b”。步骤 2:向左移动,直到到达 x 左侧的符号。步骤 3:执行步骤 1 和步骤 2,直到在向左遍历时到达“B”。步骤 4:将每个 x 替换为 B 以清空单元格,因为反转…… 阅读更多
9K+ 次浏览
为语言 L = {w:w 有奇数个 0 和 w 有奇数个 1} 构造确定性有限自动机 (DFA),字母表 Σ = {0, 1}。示例 0111、010101、01110011 是被接受的字符串,因为这些字符串具有奇数个 0 和奇数个 1。对于给定的语言,我们需要四个状态来绘制主 DFA,它将读取奇数个 0 和 1。我们也可以通过合并两个 DFA 来绘制它,其中一个将只接受奇数个 0,另一个将接受…… 阅读更多
非确定性有限自动机 (NFA) 中的 ε 转移用于在没有来自输入集 Σ 的任何符号的情况下从一个状态移动到另一个状态。∈-NFA 定义为五元组表示 {Q, q0, Σ, δ, F} 其中,δ − Q × (Σ∪ε)→2QQ − 有限状态集Σ − 输入符号的有限集q0 − 初始状态F − 最终状态δ − 转移函数NFA 和带有 epsilon 的 NFA 几乎相同;唯一的区别在于它们的转移函数。NFA 转移函数如下:δ − Q X Σ→ 2Q 带有 ε 转移函数的 NFA 如下:δ: Q × (Σ∪ε)→2Q 构造 NFA…… 阅读更多
24K+ 次浏览
图灵机 (TM) 比有限自动机 (FA) 和下推自动机 (PDA) 都强大。它们与我们制造过的任何计算机一样强大。图灵机的形式化定义图灵机可以形式化地描述为七元组 (Q, X, Σ, δ, q0, B, F) 其中,Q 是有限状态集X 是磁带字母表Σ 是输入字母表δ 是转移函数:δ:QxX→QxXx{左移,右移}q0 是初始状态B 是空格符号F 是最终状态。图灵机 (TM) 是一种数学模型,它由一条无限长的磁带组成,该磁带被分成多个单元格,用于…… 阅读更多
非确定性有限自动机 (NFA) 中的 ε 转移用于在没有来自输入集 Σ 的任何符号的情况下从一个状态移动到另一个状态。∈-NFA 定义为五元组表示 {Q, q0, Σ, δ, F} 其中,δ − Q × (Σ∪ε)→2QQ − 有限状态集Σ − 输入符号的有限集q0 − 初始状态F − 最终状态δ − 转移函数没有 ε 转移的 NFA NFA 定义为五元组表示 {Q, q0, Σ, δ, F} 其中,δ − Q X Σ→ 2QQ − 有限状态集Σ − 输入符号的有限集q0 − 初始状态F − 最终状态δ − 转移函数NFA…… 阅读更多
图灵机 (TM) 比有限自动机 (FA) 和下推自动机 (PDA) 都强大。它们与我们制造过的任何计算机一样强大。图灵机的形式化定义图灵机可以形式化地描述为七元组 (Q, X, Σ, δ, q0, B, F) 其中,Q 是有限状态集X 是磁带字母表Σ 是输入字母表δ 是转移函数:𝛿:QxX→QxXx{左移,右移}q0 是初始状态B 是空格符号F 是最终状态。图灵机 (TM) 是一种数学模型,它由一条无限长的磁带组成,该磁带被分成多个单元格,用于…… 阅读更多
2K+ 次浏览
问题设计一个用于语言 L={w1abaw2 | w1, w2 Є(a, b)*} 的 DFA,这意味着 DFA 接受所有包含“aba”作为子串的字符串。解决方案该语言 L={aba, aabaa, aabab, babab, ababa, ……} 接受的字符串。步骤 1 - 最小字符串(起始字符串)的转换图 - 如果 w1 和 w2 为空,则它生成的字符串为“aba”,因为 w1, w2 ε(a, b)* q0 是初始状态,q3 是最终状态。步骤 2 - 给定语言的最终 DFA 如下:解释 qo 是初始状态,q0 上的 'a' 转到 q1,'b' 转到 q0。…… 阅读更多