数据结构中的二叉树遍历
在本章节,我们将看到不同的遍历算法,以遍历二叉查找树中存在的键。这些遍历是中序遍历、前序遍历、后序遍历和层次遍历。
假设我们有这样一棵树 −
中序遍历序列将如下 − 5 8 10 15 16 20 23
前序遍历序列将如下 − 10 5 8 16 15 20 23
后序遍历序列将如下 − 8 5 15 23 20 16 10
层次遍历序列将如下 − 10, 5, 16, 8, 15, 20, 23
算法
inorderTraverse(root): Begin if root is not empty, then inorderTraversal(left of root) print the value of root inorderTraversal(right of root) end if End preorderTraverse(root): Begin if root is not empty, then print the value of root preorderTraversal(left of root) preorderTraversal(right of root) end if End postorderTraverse(root): Begin if root is not empty, then postorderTraversal(left of root) postorderTraversal(right of root) print the value of root end if End levelOrderTraverse(root): Begin define queue que to store nodes insert root into the que. while que is not empty, do item := item present at front position of queue print the value of item if left of the item is not null, then insert left of item into que end if if right of the item is not null, then insert right of item into que end if delete front element from que done End
示例
#include<iostream> #include<queue> using namespace std; class node{ public: int h_left, h_right, bf, value; node *left, *right; }; class tree{ private: node *get_node(int key); public: node *root; tree(){ root = NULL; //set root as NULL at the beginning } void inorder_traversal(node *r); void preorder_traversal(node *r); void postorder_traversal(node *r); void levelorder_traversal(node *r); node *insert_node(node *root, int key); }; node *tree::get_node(int key){ node *new_node; new_node = new node; //create a new node dynamically new_node->h_left = 0; new_node->h_right = 0; new_node->bf = 0; new_node->value = key; //store the value from given key new_node->left = NULL; new_node->right = NULL; return new_node; } void tree::inorder_traversal(node *r){ if(r != NULL){ //When root is present, visit left - root - right inorder_traversal(r->left); cout << r->value << " "; inorder_traversal(r->right); } } void tree::preorder_traversal(node *r){ if(r != NULL){ //When root is present, visit left - root - right cout << r->value << " "; preorder_traversal(r->left); preorder_traversal(r->right); } } void tree::postorder_traversal(node *r){ if(r != NULL){ //When root is present, visit left - root - right postorder_traversal(r->left); postorder_traversal(r->right); cout << r->value << " "; } } void tree::levelorder_traversal(node *root){ queue <node*> que; node *item; que.push(root); //insert the root at first while(!que.empty()){ item = que.front(); //get the element from the front end cout << item->value << " "; if(item->left != NULL) //When left child is present, insert into queue que.push(item->left); if(item->right != NULL) //When right child is present, insert into queue que.push(item->right); que.pop(); //remove the item from queue } } node *tree::insert_node(node *root, int key){ if(root == NULL){ return (get_node(key)); //when tree is empty, create a node as root } if(key < root->value){ //when key is smaller than root value, go to the left root->left = insert_node(root->left, key); }else if(key > root->value){ //when key is greater than root value, go to the right root->right = insert_node(root->right, key); } return root; //when key is already present, do not insert it again } main(){ node *root; tree my_tree; //Insert some keys into the tree. my_tree.root = my_tree.insert_node(my_tree.root, 10); my_tree.root = my_tree.insert_node(my_tree.root, 5); my_tree.root = my_tree.insert_node(my_tree.root, 16); my_tree.root = my_tree.insert_node(my_tree.root, 20); my_tree.root = my_tree.insert_node(my_tree.root, 15); my_tree.root = my_tree.insert_node(my_tree.root, 8); my_tree.root = my_tree.insert_node(my_tree.root, 23); cout << "In-Order Traversal: "; my_tree.inorder_traversal(my_tree.root); cout << "
Pre-Order Traversal: "; my_tree.preorder_traversal(my_tree.root); cout << "
Post-Order Traversal: "; my_tree.postorder_traversal(my_tree.root); cout << "
Level-Order Traversal: "; my_tree.levelorder_traversal(my_tree.root); }
输出
In-Order Traversal: 5 8 10 15 16 20 23 Pre-Order Traversal: 10 5 8 16 15 20 23 Post-Order Traversal: 8 5 15 23 20 16 10 Level-Order Traversal: 10 5 16 8 15 20 23
广告