C++ 程序检查有向图中是否可以进行拓扑排序
在有向无环图中,我们可以使用拓扑排序以线性顺序对顶点进行排序。
拓扑排序仅适用于有向无环图。在有向无环图 (DAG) 中,拓扑排序可以有多个。
在以下 C++ 程序中,我们执行拓扑排序以检查图中是否存在回路。
算法
对于函数 Topo_Sort
Begin Define function Topo_Sort() Declare x to the integer datatype, vstd[] of the Boolean array and Stack as a stack. Pass them as parameter. Initialize vstd[x] = true to mark the current node as vstd. Declare an iterator i. for (i = a[x].begin(); i != a[x].end(); ++i) if (!vstd[*i]) then Call Topo_Sort(*i, vstd, Stack) function. Call push() function to insert values into stack. End.
例子
#include<iostream>
#include <list>
#include <stack>
using namespace std;
class grph { // Class to represent a graph
int ver;
list<int> *a; // Pointer to an array containing adjacency listsList
void Topo_Sort(int x, bool vstd[], stack<int> &Stack); // A function used by TopologicalSort
public:
grph(int ver); // Constructor of grpf
void Insert_Edge(int x, int y); // to insert an edge to graph
void Topol_Sort(); // prints a Topological Sort of the complete graph
};
grph::grph(int ver) {
this->ver = ver;
a = new list<int>[ver];
}
void grph::Insert_Edge(int x, int y) {
a[x].push_back(y); // Add y to x’s list.
}
// A recursive function used by Topol_Sort
void grph::Topo_Sort(int x, bool vstd[], stack<int> &Stack) {
vstd[x] = true; // Mark the current node as vstd.
list<int>::iterator i;
for (i = a[x].begin(); i != a[x].end(); ++i)
if (!vstd[*i])
Topo_Sort(*i, vstd, Stack);
// Push current vertex to stack which stores result
Stack.push(x);
}
void grph::Topol_Sort() {
stack<int> Stack;
// Mark all the vertices as not vstd
bool *vstd = new bool[ver];
for (int i = 0; i < ver; i++)
vstd[i] = false;
for (int i = 0; i < ver; i++)
if (vstd[i] == false)
Topo_Sort(i, vstd, Stack);
while (Stack.empty() == false) {
cout << Stack.top() << " ";
Stack.pop();
}
}
int main() {
grph g(6); // Create a graph given in the above diagram
g.Insert_Edge(5, 2);
g.Insert_Edge(5, 0);
g.Insert_Edge(4, 0);
g.Insert_Edge(4, 1);
g.Insert_Edge(2, 3);
g.Insert_Edge(3, 1);
cout << "Topological Sort of the graph is: \n";
g.Topol_Sort();
return 0;
}输出
Topological Sort of the graph is: 5 4 2 3 1 0
广告
数据结构
网络
关系型数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 语言程序设计
C++
C#
MongoDB
MySQL
Javascript
PHP