- 算法设计与分析
- 首页
- 算法基础
- DAA - 算法导论
- DAA - 算法分析
- DAA - 分析方法
- DAA - 渐进符号与先验分析
- DAA - 时间复杂度
- DAA - 主定理
- DAA - 空间复杂度
- 分治法
- DAA - 分治算法
- DAA - 最大最小问题
- DAA - 归并排序算法
- DAA - Strassen矩阵乘法
- DAA - Karatsuba算法
- DAA - 汉诺塔问题
- 贪心算法
- DAA - 贪心算法
- DAA - 旅行商问题
- DAA - Prim最小生成树
- DAA - Kruskal最小生成树
- DAA - Dijkstra最短路径算法
- DAA - 地图着色算法
- DAA - 分数背包问题
- DAA - 带截止日期的作业调度
- DAA - 最优合并模式
- 动态规划
- DAA - 动态规划
- DAA - 矩阵链乘法
- DAA - Floyd-Warshall算法
- DAA - 0-1背包问题
- DAA - 最长公共子序列算法
- DAA - 使用动态规划的旅行商问题
- 随机化算法
- DAA - 随机化算法
- DAA - 随机化快速排序算法
- DAA - Karger最小割算法
- DAA - Fisher-Yates洗牌算法
- 近似算法
- DAA - 近似算法
- DAA - 顶点覆盖问题
- DAA - 集合覆盖问题
- DAA - 旅行商问题近似算法
- 排序技术
- DAA - 冒泡排序算法
- DAA - 插入排序算法
- DAA - 选择排序算法
- DAA - 希尔排序算法
- DAA - 堆排序算法
- DAA - 桶排序算法
- DAA - 计数排序算法
- DAA - 基数排序算法
- DAA - 快速排序算法
- 搜索技术
- DAA - 搜索技术导论
- DAA - 线性搜索
- DAA - 二分搜索
- DAA - 插值搜索
- DAA - 跳跃搜索
- DAA - 指数搜索
- DAA - 斐波那契搜索
- DAA - 子列表搜索
- DAA - 哈希表
- 图论
- DAA - 最短路径
- DAA - 多阶段图
- DAA - 最优代价二叉搜索树
- 堆算法
- DAA - 二叉堆
- DAA - 插入方法
- DAA - 堆化方法
- DAA - 提取方法
- 复杂度理论
- DAA - 确定性与非确定性计算
- DAA - 最大团
- DAA - 顶点覆盖
- DAA - P类和NP类
- DAA - 库克定理
- DAA - NP难和NP完全类
- DAA - 爬山算法
- DAA有用资源
- DAA - 快速指南
- DAA - 有用资源
- DAA - 讨论
顶点覆盖
顶点覆盖
无向图G = (V, E)的顶点覆盖是顶点的一个子集V' ⊆ V,使得如果边(u, v)是G的一条边,那么u属于V或v属于V'或两者都属于。
在给定的无向图中找到最大大小的顶点覆盖。这个最优顶点覆盖是NP完全问题的优化版本。但是,找到一个接近最优的顶点覆盖并不太难。
APPROX-VERTEX_COVER (G: Graph) c ← { } E' ← E[G] while E' is not empty do Let (u, v) be an arbitrary edge of E' c ← c U {u, v} Remove from E' every edge incident on either u or v return c
示例
给定图的边集为:
{(1,6),(1,2),(1,4),(2,3),(2,4),(6,7),(4,7),(7,8),(3,8),(3,5),(8,5)}
现在,我们从选择任意边(1,6)开始。我们消除所有与顶点1或6关联的边,并将边(1,6)添加到覆盖中。
在下一步中,我们随机选择另一条边(2,3)。
现在我们选择另一条边(4,7)。
我们选择另一条边(8,5)。
因此,该图的顶点覆盖为{1,2,4,5}。
分析
很容易看出该算法的运行时间为O(V + E),使用邻接表来表示E'。
实现
以下是上述方法在各种编程语言中的实现:
#include <stdio.h> #include <stdbool.h> #define MAX_VERTICES 100 int graph[MAX_VERTICES][MAX_VERTICES]; bool included[MAX_VERTICES]; // Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm void approxVertexCover(int vertices, int edges) { bool edgesRemaining[MAX_VERTICES][MAX_VERTICES]; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { edgesRemaining[i][j] = graph[i][j]; } } while (edges > 0) { int u, v; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { if (edgesRemaining[i][j]) { u = i; v = j; break; } } } included[u] = included[v] = true; for (int i = 0; i < vertices; i++) { edgesRemaining[u][i] = edgesRemaining[i][u] = false; edgesRemaining[v][i] = edgesRemaining[i][v] = false; } edges--; } } int main() { int vertices = 8; int edges = 10; int edgesData[10][2] = {{1, 6}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {6, 7}, {4, 7}, {7, 8}, {3, 5}, {8, 5}}; for (int i = 0; i < edges; i++) { int u = edgesData[i][0]; int v = edgesData[i][1]; graph[u][v] = graph[v][u] = 1; } approxVertexCover(vertices, edges); printf("Vertex Cover: "); for (int i = 1; i <= vertices; i++) { if (included[i]) { printf("%d ", i); } } printf("\n"); return 0; }
输出
Vertex Cover: 1 3 4 5 6 7
#include <iostream> #include <vector> using namespace std; const int MAX_VERTICES = 100; vector<vector<int>> graph(MAX_VERTICES, vector<int>(MAX_VERTICES, 0)); vector<bool> included(MAX_VERTICES, false); // Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm void approxVertexCover(int vertices, int edges) { vector<vector<bool>> edgesRemaining(vertices, vector<bool>(vertices, false)); for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { edgesRemaining[i][j] = graph[i][j]; } } while (edges > 0) { int u, v; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { if (edgesRemaining[i][j]) { u = i; v = j; break; } } } included[u] = included[v] = true; for (int i = 0; i < vertices; i++) { edgesRemaining[u][i] = edgesRemaining[i][u] = false; edgesRemaining[v][i] = edgesRemaining[i][v] = false; } edges--; } } int main() { int vertices = 8; int edges = 10; int edgesData[10][2] = {{1, 6}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {6, 7}, {4, 7}, {7, 8}, {3, 5}, {8, 5}}; for (int i = 0; i < edges; i++) { int u = edgesData[i][0]; int v = edgesData[i][1]; graph[u][v] = graph[v][u] = 1; } approxVertexCover(vertices, edges); cout << "Vertex Cover: "; for (int i = 1; i <= vertices; i++) { if (included[i]) { cout << i << " "; } } cout << endl; return 0; }
输出
Vertex Cover: 1 3 4 5 6 7
import java.util.Arrays; public class VertexCoverProblem { static final int MAX_VERTICES = 100; static int[][] graph = new int[MAX_VERTICES][MAX_VERTICES]; static boolean[] included = new boolean[MAX_VERTICES]; // Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm static void approxVertexCover(int vertices, int edges) { int[][] edgesRemaining = new int[vertices][vertices]; for (int i = 0; i < vertices; i++) { edgesRemaining[i] = Arrays.copyOf(graph[i], vertices); } while (edges > 0) { int u = -1, v = -1; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { if (edgesRemaining[i][j] == 1) { u = i; v = j; break; } } } // Check if there are no more edges remaining if (u == -1 || v == -1) { break; } included[u] = included[v] = true; for (int i = 0; i < vertices; i++) { edgesRemaining[u][i] = edgesRemaining[i][u] = 0; edgesRemaining[v][i] = edgesRemaining[i][v] = 0; } edges--; } } public static void main(String[] args) { int vertices = 8; int edges = 10; int[][] edgesData ={{1, 6}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {6, 7}, {4, 7}, {7, 8}, {3, 5}, {8, 5}}; for (int i = 0; i < edges; i++) { int u = edgesData[i][0]; int v = edgesData[i][1]; graph[u][v] = graph[v][u] = 1; } approxVertexCover(vertices, edges); System.out.print("Vertex Cover: "); for (int i = 1; i <= vertices; i++) { if (included[i]) { System.out.print(i + " "); } } System.out.println(); } }
输出
Vertex Cover: 1 3 4 5 6 7
MAX_VERTICES = 100 graph = [[0 for _ in range(MAX_VERTICES)] for _ in range(MAX_VERTICES)] included = [False for _ in range(MAX_VERTICES)] # Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm def approx_vertex_cover(vertices, edges): edges_remaining = [row[:] for row in graph] while edges > 0: for i in range(vertices): for j in range(vertices): if edges_remaining[i][j]: u = i v = j break included[u] = included[v] = True for i in range(vertices): edges_remaining[u][i] = edges_remaining[i][u] = False edges_remaining[v][i] = edges_remaining[i][v] = False edges -= 1 if __name__ == "__main__": vertices = 8 edges = 10 edges_data = [(1, 6), (1, 2), (1, 4), (2, 3), (2, 4), (6, 7), (4, 7), (7, 8), (3, 5), (8, 5)] for u, v in edges_data: graph[u][v] = graph[v][u] = 1 approx_vertex_cover(vertices, edges) print("Vertex Cover:", end=" ") for i in range(1, vertices + 1): if included[i]: print(i, end=" ") print()
输出
Vertex Cover: 1 3 4 5 6 7
广告