- Java 数据结构与算法 教程
- Java 数据结构与算法 - 首页
- Java 数据结构与算法 - 概述
- Java 数据结构与算法 - 环境设置
- Java 数据结构与算法 - 算法
- Java 数据结构与算法 - 数据结构
- Java 数据结构与算法 - 数组
- Java 数据结构与算法 - 链表
- Java 数据结构与算法 - 双向链表
- Java 数据结构与算法 - 循环链表
- Java 数据结构与算法 - 栈
- 数据结构与算法 - 表达式解析
- Java 数据结构与算法 - 队列
- Java 数据结构与算法 - 优先队列
- Java 数据结构与算法 - 树
- Java 数据结构与算法 - 哈希表
- Java 数据结构与算法 - 堆
- Java 数据结构与算法 - 图
- Java 数据结构与算法 - 搜索技术
- Java 数据结构与算法 - 排序技术
- Java 数据结构与算法 - 递归
- Java 数据结构与算法 有用资源
- Java 数据结构与算法 - 快速指南
- Java 数据结构与算法 - 有用资源
- Java 数据结构与算法 - 讨论
Java 数据结构与算法 - 树
概述
树由节点和边连接而成。我们将专门讨论二叉树或二叉搜索树。
二叉树是一种用于数据存储的特殊数据结构。二叉树有一个特殊的条件,即每个节点最多可以有两个子节点。二叉树兼具有序数组和链表的优点,搜索速度与有序数组一样快,插入或删除操作速度与链表一样快。
术语
以下是关于树的一些重要术语。
路径 - 路径指的是树中沿边的一系列节点。
根 - 树顶部的节点称为根。每棵树只有一个根,并且从根节点到任何节点都只有一条路径。
父节点 - 除根节点外的任何节点都有一条向上连接到称为父节点的节点的边。
子节点 - 在给定节点下方由其向下连接的边连接的节点称为其子节点。
叶子节点 - 没有子节点的节点称为叶子节点。
子树 - 子树表示节点的后代。
访问 - 访问是指当控制权在节点上时检查节点的值。
遍历 - 遍历是指按特定顺序通过节点。
层级 - 节点的层级表示节点的代数。如果根节点在第 0 层,那么其下一个子节点在第 1 层,其孙节点在第 2 层,依此类推。
键 - 键表示节点的值,根据该值执行节点的搜索操作。
二叉搜索树表现出特殊的行为。节点的左子节点的值必须小于其父节点的值,节点的右子节点的值必须大于其父节点的值。
二叉搜索树表示
我们将使用节点对象来实现树,并通过引用将它们连接起来。
基本操作
以下是树的基本主要操作。
搜索 - 在树中搜索一个元素。
插入 - 在树中插入一个元素。
先序遍历 - 以先序方式遍历树。
中序遍历 - 以中序方式遍历树。
后序遍历 - 以后序方式遍历树。
节点
定义一个节点,它包含一些数据以及对其左右子节点的引用。
public class Node {
public int data;
public Node leftChild;
public Node rightChild;
public Node(){}
public void display(){
System.out.print("("+data+ ")");
}
}
搜索操作
当要搜索一个元素时。从根节点开始搜索,如果数据小于键值,则在左子树中搜索元素,否则在右子树中搜索元素。对每个节点遵循相同的算法。
public Node search(int data){
Node current = root;
System.out.print("Visiting elements: ");
while(current.data != data){
if(current != null)
System.out.print(current.data + " ");
//go to left tree
if(current.data > data){
current = current.leftChild;
}//else go to right tree
else{
current = current.rightChild;
}
//not found
if(current == null){
return null;
}
}
return current;
}
插入操作
当要插入一个元素时。首先找到其合适的位置。从根节点开始搜索,如果数据小于键值,则在左子树中搜索空位置并插入数据。否则,在右子树中搜索空位置并插入数据。
public void insert(int data){
Node tempNode = new Node();
tempNode.data = data;
//if tree is empty
if(root == null){
root = tempNode;
}else{
Node current = root;
Node parent = null;
while(true){
parent = current;
//go to left of the tree
if(data < parent.data){
current = current.leftChild;
//insert to the left
if(current == null){
parent.leftChild = tempNode;
return;
}
}//go to right of the tree
else{
current = current.rightChild;
//insert to the right
if(current == null){
parent.rightChild = tempNode;
return;
}
}
}
}
}
先序遍历
这是一个简单的三步过程。
访问根节点
遍历左子树
遍历右子树
private void preOrder(Node root){
if(root!=null){
System.out.print(root.data + " ");
preOrder(root.leftChild);
preOrder(root.rightChild);
}
}
中序遍历
这是一个简单的三步过程。
遍历左子树
访问根节点
遍历右子树
private void inOrder(Node root){
if(root!=null){
inOrder(root.leftChild);
System.out.print(root.data + " ");
inOrder(root.rightChild);
}
}
后序遍历
这是一个简单的三步过程。
遍历左子树
遍历右子树
访问根节点
private void postOrder(Node root){
if(root!=null){
postOrder(root.leftChild);
postOrder(root.rightChild);
System.out.print(root.data + " ");
}
}
树的实现
Node.java
package com.tutorialspoint.datastructure;
public class Node {
public int data;
public Node leftChild;
public Node rightChild;
public Node(){}
public void display(){
System.out.print("("+data+ ")");
}
}
Tree.java
package com.tutorialspoint.datastructure;
public class Tree {
private Node root;
public Tree(){
root = null;
}
public Node search(int data){
Node current = root;
System.out.print("Visiting elements: ");
while(current.data != data){
if(current != null)
System.out.print(current.data + " ");
//go to left tree
if(current.data > data){
current = current.leftChild;
}//else go to right tree
else{
current = current.rightChild;
}
//not found
if(current == null){
return null;
}
}
return current;
}
public void insert(int data){
Node tempNode = new Node();
tempNode.data = data;
//if tree is empty
if(root == null){
root = tempNode;
}else{
Node current = root;
Node parent = null;
while(true){
parent = current;
//go to left of the tree
if(data < parent.data){
current = current.leftChild;
//insert to the left
if(current == null){
parent.leftChild = tempNode;
return;
}
}//go to right of the tree
else{
current = current.rightChild;
//insert to the right
if(current == null){
parent.rightChild = tempNode;
return;
}
}
}
}
}
public void traverse(int traversalType){
switch(traversalType){
case 1:
System.out.print("\nPreorder traversal: ");
preOrder(root);
break;
case 2:
System.out.print("\nInorder traversal: ");
inOrder(root);
break;
case 3:
System.out.print("\nPostorder traversal: ");
postOrder(root);
break;
}
}
private void preOrder(Node root){
if(root!=null){
System.out.print(root.data + " ");
preOrder(root.leftChild);
preOrder(root.rightChild);
}
}
private void inOrder(Node root){
if(root!=null){
inOrder(root.leftChild);
System.out.print(root.data + " ");
inOrder(root.rightChild);
}
}
private void postOrder(Node root){
if(root!=null){
postOrder(root.leftChild);
postOrder(root.rightChild);
System.out.print(root.data + " ");
}
}
}
演示程序
TreeDemo.java
package com.tutorialspoint.datastructure;
public class TreeDemo {
public static void main(String[] args){
Tree tree = new Tree();
/* 11 //Level 0
*/
tree.insert(11);
/* 11 //Level 0
* |
* |---20 //Level 1
*/
tree.insert(20);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
*/
tree.insert(3);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* |
* |--42 //Level 2
*/
tree.insert(42);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* |
* |--42 //Level 2
* |
* |--54 //Level 3
*/
tree.insert(54);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* |
* 16--|--42 //Level 2
* |
* |--54 //Level 3
*/
tree.insert(16);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* |
* 16--|--42 //Level 2
* |
* 32--|--54 //Level 3
*/
tree.insert(32);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* | |
* |--9 16--|--42 //Level 2
* |
* 32--|--54 //Level 3
*/
tree.insert(9);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* | |
* |--9 16--|--42 //Level 2
* | |
* 4--| 32--|--54 //Level 3
*/
tree.insert(4);
/* 11 //Level 0
* |
* 3---|---20 //Level 1
* | |
* |--9 16--|--42 //Level 2
* | |
* 4--|--10 32--|--54 //Level 3
*/
tree.insert(10);
Node node = tree.search(32);
if(node!=null){
System.out.print("Element found.");
node.display();
System.out.println();
}else{
System.out.println("Element not found.");
}
Node node1 = tree.search(2);
if(node1!=null){
System.out.println("Element found.");
node1.display();
System.out.println();
}else{
System.out.println("Element not found.");
}
//pre-order traversal
//root, left ,right
tree.traverse(1);
//in-order traversal
//left, root ,right
tree.traverse(2);
//post order traversal
//left, right, root
tree.traverse(3);
}
}
如果我们编译并运行上述程序,则会产生以下结果:
Visiting elements: 11 20 42 Element found.(32) Visiting elements: 11 3 Element not found. Preorder traversal: 11 3 9 4 10 20 16 42 32 54 Inorder traversal: 3 4 9 10 11 16 20 32 42 54 Postorder traversal: 4 10 9 3 16 32 54 42 20 11