C++ 中的欧拉四平方恒等式


在这个问题中,我们得到两个数字,我们需要使用欧拉四平方恒等式来找到这两个数字的乘积。

欧拉四平方恒等式是一种寻找两个数字乘积的方法,如果这两个数字可以表示为四个平方数之和,则可以使用该方法。

如果 a * b 可以表示为四个平方数之和,则:

a = x12 + x22 + x32 + x42
b = y12 + y22 + y32 + y42
a * b = z12 + z22 + z32 + z42

让我们举个例子来理解这个问题:

输入:

a = 54 = 22 + 32 + 42 + 52

b = 10 = 12 + 22 + 12 + 22


输出:1*1 + 1*1 + 3*3 + 23*23

解释:

a 和 b 的乘积 = 540,

可以有多种表示方式。这里我们将考虑一种解法:

540 = 1*1 + 1*1 + 3*3 + 23*23 = 1 + 1 + 9 + 529

解决方案方法:

解决这个问题的一个简单方法是使用试错法,尝试每四个平方的组合来解决问题。为此,我们将使用嵌套循环,每个平方值一个嵌套循环。然后找到计算出的值并打印所有可能的和表示组合。

这种解决方案有点复杂,时间复杂度为
O( (a*b)4 )。

程序说明了我们解决方案的工作原理:

示例

在线演示

#include <bits/stdc++.h>
using namespace std;

void findEulerSquareNumberValue(int a, int b) {

   int prod = a * b;
   int sumSquare = 0;
   for (int x = 0; x <= sqrt(prod); x++) {
      for (int y = x; y <= sqrt(prod); y++) {
         for (int z = y; z <= sqrt(prod); z++) {
            for (int k = z; k <= sqrt(prod); k++) {
           
               sumSquare = (x*x) + (y*y) + (z*z) + (k*k);
               if (sumSquare == prod) {
                cout<<"The product "<<a<<"*"<<b<<" = "<<prod<<" represented as ";
                cout<<x<<"*"<<x<<" + ";
                cout<<y<<"*"<<y<<" + ";
                cout<<z<<"*"<<z<<" + ";
                cout<<k<<"*"<<k<<endl;
                cout<<endl;
               }
            }
         }
      }
   }
}

int main() {

   int a = (2*2) + (3*3) + (4*4) + (5*5);
   int b = (1*1) + (2*2) + (1*1) + (2*2);
   cout<<"a = (2*2) + (3*3) + (4*4) + (5*5) = "<<a<<endl;
   cout<<"b = (1*1) + (2*2) + (1*1) + (2*2) = "<<b<<endl;
   findEulerSquareNumberValue(a, b);
   
   return 0;
}

输出:

a = (2*2) + (3*3) + (4*4) + (5*5) = 54
b = (1*1) + (2*2) + (1*1) + (2*2) = 10
The product 54*10 = 540 represented as 1*1 + 1*1 + 3*3 + 23*23

The product 54*10 = 540 represented as 1*1 + 3*3 + 13*13 + 19*19

The product 54*10 = 540 represented as 1*1 + 5*5 + 15*15 + 17*17

The product 54*10 = 540 represented as 1*1 + 7*7 + 7*7 + 21*21

The product 54*10 = 540 represented as 1*1 + 9*9 + 13*13 + 17*17

The product 54*10 = 540 represented as 2*2 + 4*4 + 6*6 + 22*22

The product 54*10 = 540 represented as 2*2 + 4*4 + 14*14 + 18*18

The product 54*10 = 540 represented as 2*2 + 6*6 + 10*10 + 20*20

The product 54*10 = 540 represented as 2*2 + 12*12 + 14*14 + 14*14

The product 54*10 = 540 represented as 3*3 + 3*3 + 9*9 + 21*21

The product 54*10 = 540 represented as 3*3 + 7*7 + 11*11 + 19*19

The product 54*10 = 540 represented as 3*3 + 9*9 + 15*15 + 15*15

The product 54*10 = 540 represented as 3*3 + 11*11 + 11*11 + 17*17

The product 54*10 = 540 represented as 4*4 + 10*10 + 10*10 + 18*18

The product 54*10 = 540 represented as 5*5 + 5*5 + 7*7 + 21*21

The product 54*10 = 540 represented as 5*5 + 11*11 + 13*13 + 15*15

The product 54*10 = 540 represented as 6*6 + 6*6 + 12*12 + 18*18

The product 54*10 = 540 represented as 7*7 + 7*7 + 9*9 + 19*19

The product 54*10 = 540 represented as 7*7 + 9*9 + 11*11 + 17*17

The product 54*10 = 540 represented as 9*9 + 11*11 + 13*13 + 13*13

The product 54*10 = 540 represented as 10*10 + 10*10 + 12*12 + 14*14

另一种解决此问题的方法是使用三个嵌套循环并检查第四个值,如果剩余数字是完全平方数,则其平方根就是第四个数,否则该解不存在。这种方法可能会去掉第四个循环,使解决方案更有效。

程序说明了我们解决方案的工作原理:

示例

在线演示

#include <bits/stdc++.h>
using namespace std;

void findEulerSquareNumberValue(int a, int b) {

   int prod = a * b;
   int sumSquare = 0;
   for (int x = 0; x <= sqrt(prod); x++) {
      for (int y = x; y <= sqrt(prod); y++) {
         for (int z = y; z <= sqrt(prod); z++) {
         
            sumSquare = (x*x) + (y*y) + (z*z);
            float k = sqrt(prod - sumSquare);
            if ( floor(k) == ceil(k)) {
             cout<<"The product "<<a<<"*"<<b<<" = "<<prod<<" represented as ";
             cout<<x<<"*"<<x<<" + ";
             cout<<y<<"*"<<y<<" + ";
             cout<<z<<"*"<<z<<" + ";
             cout<<k<<"*"<<k<<endl;
             cout<<endl;
            }
         }
      }
   }
}

int main() {

   int a = (2*2) + (3*3) + (4*4) + (5*5);
   int b = (1*1) + (2*2) + (1*1) + (2*2);
   cout<<"a = (2*2) + (3*3) + (4*4) + (5*5) = "<<a<<endl;
   cout<<"b = (1*1) + (2*2) + (1*1) + (2*2) = "<<b<<endl;
   findEulerSquareNumberValue(a, b);
   
   return 0;
}

输出:

a = (2*2) + (3*3) + (4*4) + (5*5) = 54
b = (1*1) + (2*2) + (1*1) + (2*2) = 10
The product 54*10 = 540 represented as 1*1 + 1*1 + 3*3 + 23*23

The product 54*10 = 540 represented as 1*1 + 1*1 + 23*23 + 3*3

The product 54*10 = 540 represented as 1*1 + 3*3 + 13*13 + 19*19

The product 54*10 = 540 represented as 1*1 + 3*3 + 19*19 + 13*13

The product 54*10 = 540 represented as 1*1 + 3*3 + 23*23 + 1*1

The product 54*10 = 540 represented as 1*1 + 5*5 + 15*15 + 17*17

The product 54*10 = 540 represented as 1*1 + 5*5 + 17*17 + 15*15

The product 54*10 = 540 represented as 1*1 + 7*7 + 7*7 + 21*21

The product 54*10 = 540 represented as 1*1 + 7*7 + 21*21 + 7*7

The product 54*10 = 540 represented as 1*1 + 9*9 + 13*13 + 17*17

The product 54*10 = 540 represented as 1*1 + 9*9 + 17*17 + 13*13

The product 54*10 = 540 represented as 1*1 + 13*13 + 17*17 + 9*9

The product 54*10 = 540 represented as 1*1 + 13*13 + 19*19 + 3*3

The product 54*10 = 540 represented as 1*1 + 15*15 + 17*17 + 5*5

The product 54*10 = 540 represented as 2*2 + 4*4 + 6*6 + 22*22

The product 54*10 = 540 represented as 2*2 + 4*4 + 14*14 + 18*18

The product 54*10 = 540 represented as 2*2 + 4*4 + 18*18 + 14*14

The product 54*10 = 540 represented as 2*2 + 4*4 + 22*22 + 6*6

The product 54*10 = 540 represented as 2*2 + 6*6 + 10*10 + 20*20

The product 54*10 = 540 represented as 2*2 + 6*6 + 20*20 + 10*10

The product 54*10 = 540 represented as 2*2 + 6*6 + 22*22 + 4*4

The product 54*10 = 540 represented as 2*2 + 10*10 + 20*20 + 6*6

The product 54*10 = 540 represented as 2*2 + 12*12 + 14*14 + 14*14

The product 54*10 = 540 represented as 2*2 + 14*14 + 14*14 + 12*12

The product 54*10 = 540 represented as 2*2 + 14*14 + 18*18 + 4*4

The product 54*10 = 540 represented as 3*3 + 3*3 + 9*9 + 21*21

The product 54*10 = 540 represented as 3*3 + 3*3 + 21*21 + 9*9

The product 54*10 = 540 represented as 3*3 + 7*7 + 11*11 + 19*19

The product 54*10 = 540 represented as 3*3 + 7*7 + 19*19 + 11*11

The product 54*10 = 540 represented as 3*3 + 9*9 + 15*15 + 15*15

The product 54*10 = 540 represented as 3*3 + 9*9 + 21*21 + 3*3

The product 54*10 = 540 represented as 3*3 + 11*11 + 11*11 + 17*17

The product 54*10 = 540 represented as 3*3 + 11*11 + 17*17 + 11*11

The product 54*10 = 540 represented as 3*3 + 11*11 + 19*19 + 7*7

The product 54*10 = 540 represented as 3*3 + 13*13 + 19*19 + 1*1

The product 54*10 = 540 represented as 3*3 + 15*15 + 15*15 + 9*9

The product 54*10 = 540 represented as 4*4 + 6*6 + 22*22 + 2*2

The product 54*10 = 540 represented as 4*4 + 10*10 + 10*10 + 18*18

The product 54*10 = 540 represented as 4*4 + 10*10 + 18*18 + 10*10

The product 54*10 = 540 represented as 4*4 + 14*14 + 18*18 + 2*2

The product 54*10 = 540 represented as 5*5 + 5*5 + 7*7 + 21*21

The product 54*10 = 540 represented as 5*5 + 5*5 + 21*21 + 7*7

The product 54*10 = 540 represented as 5*5 + 7*7 + 21*21 + 5*5

The product 54*10 = 540 represented as 5*5 + 11*11 + 13*13 + 15*15

The product 54*10 = 540 represented as 5*5 + 11*11 + 15*15 + 13*13

The product 54*10 = 540 represented as 5*5 + 13*13 + 15*15 + 11*11

The product 54*10 = 540 represented as 5*5 + 15*15 + 17*17 + 1*1

The product 54*10 = 540 represented as 6*6 + 6*6 + 12*12 + 18*18

The product 54*10 = 540 represented as 6*6 + 6*6 + 18*18 + 12*12

The product 54*10 = 540 represented as 6*6 + 10*10 + 20*20 + 2*2

The product 54*10 = 540 represented as 6*6 + 12*12 + 18*18 + 6*6

The product 54*10 = 540 represented as 7*7 + 7*7 + 9*9 + 19*19

The product 54*10 = 540 represented as 7*7 + 7*7 + 19*19 + 9*9

The product 54*10 = 540 represented as 7*7 + 7*7 + 21*21 + 1*1

The product 54*10 = 540 represented as 7*7 + 9*9 + 11*11 + 17*17

The product 54*10 = 540 represented as 7*7 + 9*9 + 17*17 + 11*11

The product 54*10 = 540 represented as 7*7 + 9*9 + 19*19 + 7*7

The product 54*10 = 540 represented as 7*7 + 11*11 + 17*17 + 9*9

The product 54*10 = 540 represented as 7*7 + 11*11 + 19*19 + 3*3

The product 54*10 = 540 represented as 9*9 + 11*11 + 13*13 + 13*13

The product 54*10 = 540 represented as 9*9 + 11*11 + 17*17 + 7*7

The product 54*10 = 540 represented as 9*9 + 13*13 + 13*13 + 11*11

The product 54*10 = 540 represented as 9*9 + 13*13 + 17*17 + 1*1

The product 54*10 = 540 represented as 9*9 + 15*15 + 15*15 + 3*3

The product 54*10 = 540 represented as 10*10 + 10*10 + 12*12 + 14*14

The product 54*10 = 540 represented as 10*10 + 10*10 + 14*14 + 12*12

The product 54*10 = 540 represented as 10*10 + 10*10 + 18*18 + 4*4

The product 54*10 = 540 represented as 10*10 + 12*12 + 14*14 + 10*10

The product 54*10 = 540 represented as 11*11 + 11*11 + 17*17 + 3*3

The product 54*10 = 540 represented as 11*11 + 13*13 + 13*13 + 9*9

The product 54*10 = 540 represented as 11*11 + 13*13 + 15*15 + 5*5

The product 54*10 = 540 represented as 12*12 + 14*14 + 14*14 + 2*2

更新于:2021年1月22日

147 次浏览

开启您的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.