在 NumPy 中查找掩码数组中连续的未掩码数据
要查找掩码数组中连续的未掩码数据,请使用 Python NumPy 中的 numpy.ma.flatnotmasked_contiguous。slice_list 参数是有序的切片对象序列(开始索引、结束索引)。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码为 nomask,表示关联数组中没有无效值,或者为布尔数组,该数组确定关联数组中每个元素的值是否有效。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建一个包含整数元素的数组 -
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)获取数组的维度 -
print("
Array Dimensions...
",arr.ndim)
创建一个掩码数组并将其中一些掩码为无效 -
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)获取掩码数组的维度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状 -
print("
Our Masked Array Shape...
",maskArr.shape)获取掩码数组的元素数 -
print("
Elements in the Masked Array...
",maskArr.size)
返回一个布尔值,表示数据是否连续 -
print("
Check whether the data is contiguous?
",maskArr.iscontiguous())要查找掩码数组中连续的未掩码数据,请使用 numpy.ma.flatnotmasked_contiguous -
print("
Result...
",np.ma.flatnotmasked_contiguous(maskArr))
示例
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Masked Array
print("
Our Masked Array Dimensions...
",maskArr.ndim)
# Get the shape of the Masked Array
print("
Our Masked Array Shape...
",maskArr.shape)
# Get the number of elements of the Masked Array
print("
Elements in the Masked Array...
",maskArr.size)
# Return a boolean indicating whether the data is contiguous
print("
Check whether the data is contiguous?
",maskArr.iscontiguous())
# To find contiguous unmasked data in a masked array, use the numpy.ma.flatnotmasked_contiguous in Python Numpy
print("
Result...
",np.ma.flatnotmasked_contiguous(maskArr))输出
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Check whether the data is contiguous? True Result... [slice(2, 3, None), slice(4, 7, None), slice(8, 10, None), slice(11, 12, None)]
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP