如果 $tan\ Q=\frac{1}{\sqrt{5}}$,则 $\frac{cosec^{2}\ Q-\sec^{2}\ Q}{cosec^{2}\ Q+\sec^{2}\ Q}$ 的值为多少?
已知:$tan\ Q=\frac{1}{\sqrt{5}}$。
求解:求 $\frac{cosec^{2}\ Q-\sec^{2}\ Q}{cosec^{2}\ Q+\sec^{2}\ Q}$ 的值。
解答
如题所述,$tan\ Q=\frac{1}{\sqrt{5}}$
$\Rightarrow \frac{sin\ Q}{cos\ Q}=\frac{1}{\sqrt{5}}$ [$\because tan\ Q=\frac{sin\ Q}{cos\ Q}$]
$\Rightarrow \frac{\frac{1}{cosec\ Q}}{\frac{1}{sec\ Q}}=\frac{1}{\sqrt{5}}$ [$\because sin\ Q=\frac{1}{cosec\ Q}$ 且 $cos\ Q=\frac{1}{sec\ Q}$]
$\Rightarrow \frac{sec\ Q}{cosec\ Q}=\frac{1}{\sqrt{5}}$
$\Rightarrow ( \frac{sec\ Q}{cosec\ Q})^2=( \frac{1}{\sqrt{5}})^2$ [两边平方]
$\Rightarrow \frac{sec^2\ Q}{cosec^2\ Q}=\frac{1}{5}\ ........\ ( i)$
现在,$\frac{cosec^{2}\ Q-\sec^{2}\ Q}{cosec^{2}\ Q+\sec^{2}\ Q}$
$\frac{\frac{cosec^{2}\ Q}{cosec^{2}\ Q}-\frac{\sec^{2}\ Q}{cosec^{2}\ Q}}{\frac{cosec^{2}\ Q}{cosec^{2}\ Q}+\frac{\sec^{2}\ Q}{cosec^{2}\ Q}}$ [分子和分母都除以 $cosec^{2}\ Q$]
$=\frac{1-\frac{sec^2\ Q}{cosec^{2}\ Q}}{1+\frac{sec^2\ Q}{cosec^{2}\ Q}}$
$=\frac{1-\frac{1}{5}}{1+\frac{1}{5}}$
$=\frac{\frac{5-1}{5}}{\frac{5+1}{5}}$
$=\frac{\frac{4}{5}}{\frac{6}{5}}$
$=\frac{4}{5}\times\frac{5}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
因此,$\frac{cosec^{2}\ Q-\sec^{2}\ Q}{cosec^{2}\ Q+\sec^{2}\ Q}=\frac{2}{3}$