证明:sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
待办事项
我们需要证明sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ.
解答
我们知道,
sin2A+cos2A=1
cosec2A−cot2A=1
sec2A−tan2A=1
cotA=cosAsinA
tanA=sinAcosA
cosecA=1sinA
secA=1cosA
因此,
sinθ−cosθ+1sinθ+cosθ−1=tanθ−1+secθtanθ+1−secθ (将分子和分母除以 cosθ )
=(tanθ+secθ)−1(tanθ−secθ)+1
乘以和除以 (tanθ−secθ),我们得到,
=(tanθ+secθ−1)(tanθ−secθ)(tanθ−secθ+1)(tanθ−secθ)
=(tan2θ−sec2θ)−(tanθ−secθ)(tanθ−secθ+1)(tanθ−secθ)
=−1−tanθ+secθ(tanθ−secθ+1)(tanθ−secθ)
=−(tanθ−secθ+1)(tanθ−secθ+1)(tanθ−secθ)
=−1tanθ−secθ
=1secθ−tanθ
证毕。
广告