证明下列恒等式:\( (\operatorname{cosec} \theta-\sec \theta)(\cot \theta-\tan \theta)=(\operatorname{cosec} \theta+\sec \theta)(\sec \theta \operatorname{cosec} \theta-2) \)
待办事项
我们需要证明\( (\operatorname{cosec} \theta-\sec \theta)(\cot \theta-\tan \theta)=(\operatorname{cosec} \theta+\sec \theta)(\sec \theta \operatorname{cosec} \theta-2) \).
解答
我们知道:
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
因此:
考虑左边 (LHS):
$(\operatorname{cosec} \theta-\sec \theta)(\cot \theta-\tan \theta)=\left(\frac{1}{\sin \theta}-\frac{1}{\cos \theta}\right)\left(\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}\right)$
$=\frac{\cos \theta-\sin \theta}{\sin \theta \cos \theta} \times \frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin \theta \cos \theta}$
$=\frac{(\cos \theta-\sin \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{(\cos \theta-\sin \theta)[(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)]}{\sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{(\cos \theta-\sin \theta)^{2}(\cos \theta+\sin \theta)}{\sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{(1-2 \sin \theta \cos \theta)(\sin \theta+\cos \theta)}{\sin ^{2} \theta \cos ^{2} \theta}$
考虑右边 (RHS):
$(\operatorname{cosec} \theta+\sec \theta)(\sec \theta \operatorname{cosec} \theta-2)=\left(\frac{1}{\sin \theta}+\frac{1}{\cos \theta}\right)\left(\frac{1}{\cos \theta \sin\theta}-2\right)$
$=\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta} \times \frac{1-2 \sin \theta\cos \theta}{\sin \theta \cos \theta}$
$=\frac{(1-2 \sin \theta \cos \theta)(\sin \theta+\cos \theta)}{\sin ^{2} \theta \cos ^{2} \theta}$
这里:
LHS = RHS
证毕。