解方程:$\frac{( 3x+1)}{16}$ + $\frac{( 2x−3)}{7}$ = $\frac{( x+3)}{8}$ + $\frac{( 3x−1)}{14}$。


已知:$\frac{( 3x+1)}{16}$ + $\frac{( 2x−3)}{7}$ = $\frac{( x+3)}{8}$ + $\frac{( 3x−1)}{14}$。

要求:求解上述表达式中的 $x$。


$\frac{( 3 x + 1)}{16} + \frac{( 2 x - 3)}{7} = \frac{( x + 3)}{8} + \frac{( 3 x - 1)}{14}$

$\Rightarrow \frac{21 x + 7 + 32 x - 48}{112}  =  \frac{7 x + 21 + 12 x - 4}{56}$

$\Rightarrow \frac{53 x - 41}{112} = \frac{19 x + 17}{56}$     

$\Rightarrow 53 x - 41 = 38 x + 34$                           $[ (112 : 56)  = ( 2:1 )  ]$

$\Rightarrow 53 x-38 x = 34 + 41$

$\Rightarrow 15 x = 75$

$\Rightarrow x = \frac{75}{15}$

$\Rightarrow x = 5$

更新时间: 2022-10-10

62 次浏览

开启你的 职业生涯

完成课程,获得认证

开始学习
广告