用因式分解法解下列二次方程
$\frac{3}{x+1}-\frac{1}{2}=\frac{2}{3x-1}, x ≠-1, \frac{1}{3}$
已知
已知二次方程为$\frac{3}{x+1}-\frac{1}{2}=\frac{2}{3x-1}, x ≠-1, \frac{1}{3}$。
要求
我们必须用因式分解法解这个二次方程。
解法
$\frac{3}{x+1}-\frac{1}{2}=\frac{2}{3x-1}$
$\frac{3(2)-1(x+1)}{(x+1)(2)}=\frac{2}{3x-1}$
$\frac{6-x-1}{2x+2}=\frac{2}{3x-1}$
$\frac{5-x}{2x+2}=\frac{2}{3x-1}$
$(5-x)(3x-1)=2(2x+2)$ (交叉相乘)
$15x-5-3x^2+x=4x+4$
$-3x^2+16x-5=4x+4$
$3x^2+4x-16x+4+5=0$
$3x^2-12x+9=0$
$3x^2-3x-9x+9=0$
$3x(x-1)-9(x-1)=0$
$(3x-9)(x-1)=0$
$3x-9=0$ 或 $x-1=0$
$3x-9=0$ 或 $x-1=0$
$3x=9$ 或 $x=1$
$x=\frac{9}{3}$ 或 $x=1$
$x=3$ 或 $x=1$
x 的值为 1 和 3。
- 相关文章
- 用因式分解法解下列二次方程:$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- 用因式分解法解下列二次方程:$\frac{1}{x}\ –\ \frac{1}{x\ -\ 2}\ =\ 3$
- 用因式分解法解下列二次方程:$3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5, x≠\frac{1}{3}, \frac{-3}{2}$
- 用因式分解法解下列二次方程:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 用因式分解法解下列二次方程:$\frac{x-1}{2x+1}+\frac{2x+1}{x-1}=\frac{5}{2}, x ≠-\frac{1}{2},1$
- 用因式分解法解下列二次方程:$\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$
- 用因式分解法解下列二次方程:$\frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4x-1}, x ≠1, -1, \frac{1}{4}$
- 用因式分解法解下列二次方程:$\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5x}, x ≠0, -1, 2$
- 解$\frac{3}{x+1} -\frac{2}{3x-1} = \frac{1}{2}$
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 2}\ +\ \frac{2}{x\ -\ 1}\ =\ \frac{6}{x},\ x\ ≠\ 0$
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 3}\ +\ \frac{2}{x\ -\ 2}\ =\ \frac{8}{x};\ x\ ≠\ 0,\ 2,\ 3$
- 用因式分解法解下列二次方程:$\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{5}{6}, x ≠1,-1$
- 解有理方程 $\frac{2}{(x-3)} + \frac{1}{x} = \frac{(x-1)}{(x-3)}$。
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 1}\ –\ \frac{1}{x\ +\ 5}\ =\ \frac{6}{7},\ x\ ≠\ 1,\ -5$
- 用因式分解法解下列二次方程:$\frac{x\ +\ 3}{x\ -\ 2}\ -\ \frac{1\ -\ x}{x}\ =\ \frac{17}{4},\ x\ ≠\ 0,\ 2$