解下列算式:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$。
已知
给定表达式为 $3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$。
要求
我们需要解出给定的表达式。
解答
对于这类问题,我们需要使用 BODMAS 法则。
在 Bodmas 法则中,我们必须按照以下顺序求解:先算括号,然后是乘方,然后是除法,乘法,最后是加法和减法。
$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72} = \frac{(3\times 5+2)}{5} \div (\frac{4}{5} \times \frac{1}{5}) + (\frac{2}{3} \times \frac{3}{4}) - \frac{(72\times 1+35)}{72}$
$= \frac{17}{5} \div \frac{4}{25} + \frac{1}{2} - \frac{107}{72}$
$ = \frac{17}{5} \times \frac{25}{4} + \frac{1}{2} - \frac{107}{72}$
$=\frac{(17\times 5)}{4} +\frac{1}{2} - \frac{107}{72}$
$ = \frac{85}{4} +\frac{1}{2} - \frac{107}{72}$
$= \frac{(18\times 85+36\times 1-107)}{72}$
$ = \frac{(1530+36-107)}{72}$
$= \frac{1459}{72}$。
因此,$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$ 的值为 $\frac{1459}{72}$。
- 相关文章
- 解 $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$。
- 解下列算式:$(\frac{5}{3})^4 \times (\frac{5}{3})^4 \div (\frac{5}{3})^2$。
- 解:$3\frac{2}{7} \ \div \ 4\frac{3}{5} \ \times \ 1\frac{1}{2}$
- 解(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- 求:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- 解下列算式:$4\frac{1}{6}\times\frac{2}{5}\div\frac{1}{3}$
- 化简:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- 证明:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- 在以下每组数中,哪个数更大:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- 利用分配律,解$\frac{2}{3}\times\frac{1}{5}-\frac{4}{5}-\frac{2}{3}\times\frac{3}{5}$
- 利用合适的性质验证以下等式:$(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$
- 解下列算式:$\frac{-2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$
- 验证:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
- 解: $-\frac{2}{3}\ \times\ \frac{3}{5}\ +\ \frac{5}{2}\ -\ \frac{3}{5}\ \times\ \frac{1}{6}$
- 将下列有理数按升序排列:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$