- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following pair of linear equations by the substitution method.
(i) $x + y = 14, x – y = 4$
(ii) $s – t = 3, \frac{s}{3} + \frac{t}{2} = 6$
(iii) $3x – y = 3, 9x – 3y = 9$
(iv) $0.2x + 0.3y = 1.3, 0.4x + 0.5y = 2.3$
(v) \( \sqrt{2} x+\sqrt{3} y=0, \sqrt{3} x-\sqrt{8} y=0 \)
(vi) \( \frac{3 x}{2}-\frac{5 y}{3}=-2, \frac{x}{3}+\frac{y}{2}=\frac{13}{6} \).
To do:
We have to solve the given pair of equations by the substitution method.
Solution:
(i) $x+y=14$.........(i)
This implies,
$y = 14-x$
Putting the value of $y$ in equation $x – y = 4$, we get,
$x – (14 – x) = 4$
$x – 14 + x = 4$
$2x = 4 + 14$
$2x = 18$
$x = 9$
Putting $x = 9$ in equation (i), we get,
$9 + y = 14$
$y = 14 – 9$
$y = 5$
The values of $x$ and $y$ are $9$ and $5$ respectively.
(ii) $s-t=3$........(i)
This implies,
$s = 3+t$
Putting the value of $s$ in equation $\frac{s}{3} + \frac{t}{2} = 6$, we get,
$\frac{3+t}{3} + \frac{t}{2} = 6$
$\frac{2(3+t)+3(t)}{6} = 6$
$6+2t+3t = 6(6)$
$5t = 36-6$
$t = \frac{30}{5}$
$t=6$
Putting $t = 6$ in equation (i), we get,
$s-6 = 3$
$s = 3 + 6$
$s = 9$
The values of $s$ and $t$ are $9$ and $6$ respectively.
(iii) $3x – y = 3$........(i)
This implies,
$y = 3x-3$
Putting the value of $y$ in equation $9x-3y=9$, we get,
$9x -3(3x-3) = 9$
$9x-9x+9 = 6$
$9 = 9$
This implies,
$x$ and $y$ can have infinite real values.
(iv) The given system of equations can be written as,
$0.2x+0.3y=1.3$
Multiplying by $10$ on both sides, we get,
$2x+3y=13$---(i)
$0.4x+0.5y=2.3$
$\Rightarrow 0.4x=2.3-0.5y$
Multiplying by $10$ on both sides, we get,
$4x=23-5y$
$\Rightarrow x=\frac{23-5y}{4}$----(ii)
Substitute $x=\frac{23-5y}{4}$ in equation (i), we get,
$2(\frac{23-5y}{4})+3y=13$
$\frac{2(23-5y)}{4}+3y=13$
Multiplying by $2$ on both sides, we get,
$2(\frac{23-5y}{2})+2(3y)=2(13)$
$23-5y+6y=26$
$y=26-23$
$y=3$
Substituting the value of $y=3$ in equation (ii), we get,
$x=\frac{23-5(3)}{4}$
$x=\frac{8}{4}$
$x=2$
Therefore, the solution of the given system of equations is $x=2$ and $y=3$.
(v) The given pair of equations are:
$\sqrt{2}x\ +\ \sqrt{3}y\ =\ 0$................(i)
$\sqrt{3}x\ −\ \sqrt{8}y\ =\ 0$…………(ii)
From equation (i) $ x = -\sqrt{\frac{3}{2}}y$ …………….(iii)
Substituting this value in equation (ii) we obtain
$\sqrt{3}x\ −\ \sqrt{8}y\ =\ 0$
$\Rightarrow \sqrt{3}\left(-\sqrt{\frac{3}{2}}\right)y -\sqrt{8} y=0$
$\Rightarrow \frac{3}{-\sqrt{2}}y-\sqrt{8}y=0$
$\Rightarrow (\sqrt2) \frac{3}{-\sqrt{2}}y-\sqrt{8}y=(\sqrt2)0$
$\Rightarrow -3y-4y = 0$
$\Rightarrow y=0$
Now, substituting y in equation (iii) we obtain,
$ x = -\sqrt{\frac{3}{2}}(0)$
$\Rightarrow x = 0$
This implies,
The value of $x$ and $y$ obtained are $0$ and $0$respectively.
(vi) Given pair of equations are:
$\frac{3 x}{2}-\frac{5 y}{3}=-2$ .......... $( i)$
$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$ .......$(ii)$
On multiplying equation $(i)$ by $\frac{1}{3}$
$\frac{3 x}{2}\times\frac{1}{3}-\frac{5 y}{3}\times\frac{1}{3}=-2\times\frac{1}{3}$
$\frac{3}{6}x-\frac{5}{9}y=-\frac{2}{3}$ .......... $(iii)$
And multiply $(ii)$ by $\frac{3}{2}$
$\frac{x}{3}\times\frac{3}{2}+\frac{y}{2}\times\frac{3}{2}=\frac{13}{6}\times\frac{3}{2}$
$\frac{3}{6}x+\frac{3}{4}y=\frac{39}{12}$ ......... $(iv)$
Subtract $(iii)$ from $(iv)$
$\frac{3}{6}x+\frac{3}{4}y-\frac{3}{6}x+\frac{5}{9}y=\frac{39}{12}-( -\frac{2}{3})$
$\Rightarrow \frac{3}{4}y+\frac{5}{9}y=\frac{39}{12}+\frac{2}{3}$
$\Rightarrow \frac{27+20}{36}y=\frac{117+24}{36}$
$\Rightarrow \frac{47}{36}y=\frac{141}{36}$
$\Rightarrow 47y=141$
$\Rightarrow y=\frac{141}{47}$
$\Rightarrow y=3$
On putting $y=3$, in $( i)$
$\frac{3 x}{2}-\frac{5}{3}\times3=-2$
$\Rightarrow \frac{3 x}{2}-\frac{15}{3}=-2$
$\Rightarrow \frac{3x}{2}=-2+\frac{15}{3}$
$\Rightarrow \frac{3x}{2}=\frac{-6+15}{3}$
$\Rightarrow \frac{3x}{2}=\frac{9}{3}$
$\Rightarrow 9x=18$
$\Rightarrow x=\frac{18}{9}$
$\Rightarrow x=2$
This implies,
The value of $x$ and $y$ obtained are $2$ and $3$respectively.