解下列方程组
$\frac{4}{x}\ +\ 5y\ =\ 7$
$\frac{3}{x}\ +\ 4y\ =\ 5$


已知

已知方程组为


$\frac{4}{x}\ +\ 5y\ =\ 7$


$\frac{3}{x}\ +\ 4y\ =\ 5$


解题步骤

我们需要解已知的方程组。


解答

已知方程组可以写成:


$\frac{4}{x}+5y=7$


设 $\frac{1}{x}=k$,


$\Rightarrow 4k+5y=7$---(i)


$\frac{3}{x}+4y=5$


$\Rightarrow 3k+4y=5$


$\Rightarrow 3k=5-4y$


$\Rightarrow k=\frac{5-4y}{3}$----(ii)


将 $k=\frac{5-4y}{3}$ 代入方程 (i),得到:


$4(\frac{5-4y}{3})+5y=7$

$\frac{4(5-4y)}{3}+5y=7$ 

两边乘以 $3$,得到:

$3(\frac{20-16y}{3})+3(5y)=3(7)$

$20-16y+15y=21$

$-y=21-20$

$-y=1$

$y=-1$

将 $y=-1$ 代入方程 (ii),得到:

$k=\frac{5-4(-1)}{3}$

$k=\frac{5+4}{3}$

$k=\frac{9}{3}$

$k=3$

这意味着:

$x=\frac{1}{k}=\frac{1}{3}$

因此,已知方程组的解为 $x=\frac{1}{3}$ 和 $y=-1$。

更新于: 2022年10月10日

54 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告