证明以下等式
\( 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha \)
需要完成的任务
我们需要证明 \( 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha \).
解答
我们知道:
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
因此,
$1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=1+\frac{\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}{1+\frac{1}{\sin \alpha}}$
$=1+\frac{\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}{\frac{\sin \alpha+1}{\sin \alpha}}$
$=1+\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha} \times \frac{\sin \alpha}{\sin \alpha+1}$
$=1+\frac{\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{\sin \alpha(\sin \alpha+1)+\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{\sin^2 \alpha+\sin \alpha+\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{1+\sin \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{1}{\sin \alpha}$
$=\operatorname{cosec} \alpha$
证毕。