证明
(i) $(3x + 7)^2 - 84x = (3x - 7)^2$
(ii) $(9a - 5b)^2 + 180ab = (9a + 5b)^2$
(iii) $(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn = \frac{16m^2}{9} + \frac{9n^2}{16}$
(iv) $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$
(v) $(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$
要做的事情
我们必须证明
(i) $(3x + 7)^2 - 84x = (3x - 7)^2$
(ii) $(9a - 5b)^2 + 180ab = (9a + 5b)^2$
(iii) $(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn = \frac{16m^2}{9} + \frac{9n^2}{16}$
(iv) $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$
(v) $(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$
解决方案
为了证明每种情况下 LHS = RHS,我们可以使用以下代数恒等式
$(a+b)^2=a^2+2ab+b^2$.............(I)
$(a-b)^2=a^2-2ab+b^2$.............(II)
$(a+b)(a-b)=a^2-b^2$................(III)
(i) 给定的方程是 $(3x + 7)^2 - 84x = (3x - 7)^2$
让我们考虑 LHS,
$(3x + 7)^2 - 84x =(3x)^2+2(3x)(7)+(7)^2-84x$ [使用 (I)]
$(3x + 7)^2 - 84x =9x^2+42x+49-84x$
$(3x + 7)^2 - 84x =9x^2+42x-84x+49$
$(3x + 7)^2 - 84x =9x^2-42x+49$
$(3x + 7)^2 - 84x =(3x)^2-2(3x)(7)+(7)^2$
$(3x + 7)^2 - 84x =(3x-7)^2$ [使用 (II)]
LHS = RHS
因此得证
(ii) 给定的方程是 $(9a - 5b)^2 + 180ab = (9a + 5b)^2$
让我们考虑 LHS,
$(9a - 5b)^2 + 180ab =(9a)^2-2(9a)(5b)+(5b)^2+180ab$ [使用 (II)]
$(9a - 5b)^2 + 180ab =(9a)^2-90ab+(5b)^2+180ab$
$(9a - 5b)^2 + 180ab =(9a)^2-90ab+180ab+(5b)^2$
$(9a - 5b)^2 + 180ab =(9a)^2+90ab+(5b)^2$
$(9a - 5b)^2 + 180ab =(9a)^2+2(9a)(5b)+(5b)^2$
$(9a - 5b)^2 + 180ab =(9a+5b)^2$ [使用 (I)]
LHS = RHS
因此得证
(iii) 给定的方程是 $(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn = \frac{16m^2}{9} + \frac{9n^2}{16}$
让我们考虑 LHS,
$(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn =(\frac{4m}{3})^2-2(\frac{4m}{3})(\frac{3n}{4})+(\frac{3n}{4})^2+2mn$ [使用 (II)]
$(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn =(\frac{4m}{3})^2-2mn+(\frac{3n}{4})^2+2mn$
$(\frac{4m}{3}-\frac{3n}{4})^2+2mn=\frac{(4m)^2}{3^2}-2mn+2mn+\frac{(3n)^2}{4^2}$
$(\frac{4m}{3}-\frac{3n}{4})^2+2mn=\frac{16m^2}{9}+\frac{9n^2}{16}$
LHS = RHS
因此得证
(iv) 给定的方程是 $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$
让我们考虑 LHS,
$(4pq + 3q)^2 - (4pq - 3q)^2 =[(4pq)^2+2(4pq)(3q)+(3q)^2]-[(4pq)^2-2(4pq)(3q)+(3q)^2]$ [使用 (I) 和 (II)]
$(4pq + 3q)^2 - (4pq - 3q)^2 =(4pq)^2+24pq^2+(3q)^2-(4pq)^2+24pq^2-(3q)^2$
$(4pq + 3q)^2 - (4pq - 3q)^2 =(4pq)^2-(4pq)^2+24pq^2+24pq^2+(3q)^2-(3q)^2$
$(4pq + 3q)^2 - (4pq - 3q)^2 =48pq^2$
LHS = RHS
因此得证
(v) 给定的方程是 $(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$
让我们考虑 LHS,
$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) =a^2-b^2+b^2-c^2+c^2-a^2$ [使用 (III)]
$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) =a^2-a^2-b^2+b^2-c^2+c^2$
$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) =0$
LHS = RHS
因此得证
- 相关文章
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 将以下代数表达式相加(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 减去:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) 从 \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) 从 \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) 从 \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) 从 \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) 从 \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- 化简:$-\frac{1}{2}a^{2}b^{2}c+\frac{1}{3}ab^{2}c-\frac{1}{4}abc^{2}-\frac{1}{5}cb^{2}a^{2}+\frac{1}{6}cb^{2}a-\frac{1}{7}c^{2}ab+\frac{1}{8}ca^{2}b$。
- 计算\( \left(\frac{-4}{7} a^{2} b\right) \times\left(\frac{-2}{3} b^{2} c\right) \times\left(\frac{-7}{6} c^{2} a\right) \)
- 减去:(i) $-5xy$ 从 $12xy$(ii) $2a^2$ 从 $-7a^2$(iii) \( 2 a-b \) 从 \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) 从 \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \)
- 证明:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- 求以下乘积:\( \left(\frac{-7}{4} a b^{2} c-\frac{6}{25} a^{2} c^{2}\right)\left(-50 a^{2} b^{2} c^{2}\right) \)
- 乘以:\( \left(\frac{-a}{7}+\frac{a^{2}}{9}\right) \) 乘以 \( \left(\frac{b}{2}-\frac{b^{2}}{3}\right) \)
- 减去:(i) $-5y^2$ 从 $y^2$(ii) $6xy$ 从 $-12xy$(iii) $(a-b)$ 从 $(a+b)$(iv) $a(b-5)$ 从 $b(5-a)$(v) $-m^2+5mn$ 从 $4m^2-3mn+8$(vi) $-x^2+10x-5$ 从 $5x-10$(vii) $5a^2-7ab+5b^{2}$ 从 $3ab-2a^2-2b^2$(viii) $4pq-5q^2-3p^2$ 从 $5p^2+3q^2-pq$
- 解决:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- 将以下二项式的平方写成三项式:(i)\( (x+2)^{2} \)(ii) \( (8 a+3 b)^{2} \)(iii) \( (2 m+1)^{2} \)(iv) \( \left(9 a+\frac{1}{6}\right)^{2} \)(v) \( \left(x+\frac{x^{2}}{2}\right)^{2} \)(vi) \( \left(\frac{x}{4}-\frac{y}{3}\right)^{2} \)(vii) \( \left(3 x-\frac{1}{3 x}\right)^{2} \)(viii) \( \left(\frac{x}{y}-\frac{y}{x}\right)^{2} \)(ix) \( \left(\frac{3 a}{2}-\frac{5 b}{4}\right)^{2} \)(x) \( \left(a^{2} b-b c^{2}\right)^{2} \)(xi) \( \left(\frac{2 a}{3 b}+\frac{2 b}{3 a}\right)^{2} \)(xii) \( \left(x^{2}-a y\right)^{2} \)
- 已知 $sin\ \theta = \frac{a}{b}$,则 $cos\ \theta$ 等于(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- 化简以下内容:$\frac{3^{-\frac{6}{7}} \times 4^{-\frac{3}{7}} \times 9^{\frac{3}{7}} \times 2^{\frac{6}{7}}}{2^{2}+2^{0}+2^{-2}}$。
- 求:(a) $\frac{1}{2}$ 的 (i) $2\frac{3}{4}$ (ii) $4\frac{2}{9}$(b) $\frac{5}{8}$ 的 (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$
开启您的 职业生涯
通过完成课程获得认证
开始学习