已知:\( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}} \) 求解:我们需要求 \( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}} \) 的值。 解答:我们知道,$(a^m)^n=a^{m\times n}$ $\frac{a^m}{b^m}=(\frac{a}{b})^m$ 因此,$\frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}= \frac{\left((3^5)^{1 / 5}\right)^{4}}{\left((2^5)^{1 / 5}\right)^{4}}$$=\frac{((3)^{5\times\frac{1}{5}})^4}{((2)^{5\times\frac{1}{5}})^4}$$=\frac{(3)^{1\times4}}{(2)^{1\times4}}$$=\frac{3^4}{2^4}$$=(\frac{3}{2})^4$$=\frac{1}{3^{-4}}\times\frac{1}{2^4}$$=\frac{1}{3^{-4}\times2^4}$.选项 D 是正确答案。
已知:给定的方程组为: $2x\ +\ 3y\ =\ k$$(k\ -\ 1)x\ +\ (k\ +\ 2)y\ =\ 3k$ 求解:我们需要求使给定方程组有无穷多解的 k 值。 解答:给定的方程组可以写成:$2x\ +\ 3y\ -\ k=0$$(k\ -\ 1)x\ +\ (k\ +\ 2)y\ -\ 3k\ =\ 0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组有无穷多解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} =\frac{c_{1}}{c_{2}} \ $将给定的方程组与... 阅读更多
已知:给定的方程组为:$kx\ -\ 5y\ =\ 2$$6x\ +\ 2y\ =\ 7$ 求解:我们需要求使给定方程组无解的 k 值。 解答:给定的方程组可以写成:$kx\ -\ 5y\ -\ 2=0$$6x\ +\ 2y\ -\ 7=0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组无解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $将给定的方程组与标准形式的方程进行比较,我们得到, $a_1=k, b_1=-5, c_1=-2$ 和 $a_2=6, ... 阅读更多
已知:给定的方程组为:$x\ +\ 2y\ =\ 0$$2x\ +\ ky\ =\ 5$ 求解:我们需要求使给定方程组无解的 k 值。 解答:给定的方程组可以写成:$x\ +\ 2y\ =0$$2x\ +\ ky\ -\ 5=0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组无解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $将给定的方程组与标准形式的方程进行比较,我们得到, $a_1=1, b_1=2, c_1=0$ 和 $a_2=2, b_2=k, ... 阅读更多
已知:给定的方程组为:$3x\ -\ 4y\ +\ 7=\ 0$$kx\ +\ 3y\ -\ 5=\ 0$ 求解:我们需要求使给定方程组无解的 k 值。 解答:给定的方程组为, $3x\ -\ 4y\ +\ 7=\ 0$$kx\ +\ 3y\ -\ 5=\ 0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组无解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $将给定的方程组与标准形式的方程进行比较,我们得到, $a_1=3, b_1=-4, c_1=7$ ... 阅读更多
已知:给定的方程组为:$2x\ -\ ky\ +\ 3=\ 0$$3x\ +\ 2y\ -\ 1=\ 0$ 求解:我们需要求使给定方程组无解的 k 值。 解答:给定的方程组为, $2x\ -\ ky\ +\ 3=\ 0$$3x\ +\ 2y\ -\ 1=\ 0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组无解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $将给定的方程组与标准形式的方程进行比较,我们得到, $a_1=2, b_1=-k, ... 阅读更多
已知:给定的方程组为:$2x\ +\ ky\ =\ 11$$5x\ -\ 7y\ =\ 5$ 求解:我们需要求使给定方程组无解的 k 值。 解答:给定的方程组可以写成:$2x\ +\ ky\ -\ 11=0$$5x\ -\ 7y\ -\ 5=0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组无解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $将给定的方程组与标准形式的方程进行比较,我们得到, $a_1=2, b_1=k, c_1=-11$ 和 $a_2=5, ... 阅读更多
已知:给定的方程组为:$kx\ +\ 3y\ =\ k-\ 3$$12x\ +\ ky\ =\ 6$ 求解:我们需要求使给定方程组无解的 k 值。 解答:给定的方程组可以写成:$kx\ +\ 3y\ -\ (k-\ 3)=0$$12x\ +\ ky\ -\ 6=0$两个变量方程组的标准形式为 $a_{1} x+b_{1} y+c_{1}=0$ 和 $a_{2} x+b_{2} y-c_{2}=0$.上述方程组无解的条件是$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $将给定的方程组与标准形式的方程进行比较,我们得到, $a_1=k, b_1=3, c_1=-(k-3)$ ... 阅读更多
已知,初速度,u = 4 m/s 距离,s = 4 m 时间,t = 2 s 求解 = 加速度,a 解答-根据运动的第二定律,我们知道,$s=ut+\frac{1}{2}a{t}^{2}$ 代入给定值,我们得到- $4=4\times 2+\frac{1}{2}\times a\times (2{)}^{2}$ $4=8+\frac{1}{2}\times 4\times a$ $4=8+1\times 2\times a$ $4=8+2a$ $2a=4-8$ $a=\frac{-4}{2}$ $a=-2m/{s}^{2}$ 因此,物体的加速度为 -2m/s2。 这里,负号表示加速度向左,这意味着减速或速度的负变化。
柴油是用于驱动重型车辆的石油产品。 解释 柴油由于其更高的效率和成本效益而被用于驱动重型车辆。 它具有更高的能量密度,这意味着与相同体积的汽油相比,可以从柴油中提取更多的能量。 而且,由于这种原因,汽车中的柴油发动机提供了更高的里程,使其成为重型运输和设备的理想选择。
数据结构
网络
关系数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP