Loading [MathJax]/jax/element/mml/optable/MathOperators.js

无限时间内功率信号的能量


什么是功率信号?

如果信号的平均功率 (P) 是有限的,即 0 < 𝑃 < ∞,则该信号被称为功率信号。功率信号在无限时间内的总能量是无限的,即 𝐸 = ∞。周期信号是功率信号的例子。

功率信号的能量

考虑一个连续时间功率信号 x(t)。信号 x(t) 的功率是有限的,由下式给出:

P=limT12TTTx2(t)dt...(1)

因此,信号的能量由下式给出:

E=limTTTx2(t)dt E=limT[2T12TTTx2(t)dt] E=limT2T[limT12TTTx2(t)dt]...(2)

使用公式 (1) 和 (2),我们得到:

E=limT2TP=

因此,功率信号在无限时间内的能量是无限的。

Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.

数值例子

确定信号 𝑥(𝑡) = sin2 𝜔𝑡 是否为功率信号。如果是,则计算信号的功率和能量。

解答

给定信号为:

𝑥(𝑡) = sin2 𝜔𝑡

由于给定信号 x(t) 是一个平方正弦波,它是一个周期信号,因此它可以是功率信号。

信号的平均功率:

P=limT12TTTx2(t)dt P=limT12TTT[sin2ωt]2dt=limT12TTTsin4ωtdt

根据标准三角关系的定义,我们得到:

sin4ωt=18(34cos2ωt+cos4ωt) \mathrm{\Rightarrow P=\lim_{T\rightarrow \infty }\frac{1}{2T}\int_{-T}^{T}\frac{3}{8}\: dt-\lim_{T\rightarrow \infty }\frac{1}{2T}\int_{-T}^{T}\frac{4}{8}cos 2\omega t\: dt+\lim_{T\rightarrow \infty }\frac{1}{2T}\int_{-T}^{T}\frac{1}{8}\cos 4\omega t\: dt} \mathrm{\Rightarrow P=\lim_{T\rightarrow \infty }\frac{1}{2T}\left ( \frac{3}{8} \right )\left [ t \right ]_{-T}^{T}-0+0} \mathrm{\Rightarrow P=\lim_{T\rightarrow \infty }\frac{1}{2T}\left ( \frac{3}{8} \right )\left [ T+T \right ]=\frac{3}{8}}

因此,给定信号的功率是有限的,等于 𝑃 = 3⁄8 瓦。

现在,信号的能量:

\mathrm{E=\lim_{T\rightarrow \infty }\int_{-T }^{T }x^{2}(t)dt=\lim_{T\rightarrow \infty }\int_{-T }^{T }\left [\sin ^{2}\omega t \right ]^{2}dt} \mathrm{\Rightarrow E=\lim_{T\rightarrow \infty }\int_{-T}^{T}\frac{1}{8}(3-4\cos 2\omega t+\cos 4\omega t)dt=\lim_{T\rightarrow \infty }\left ( \frac{3}{8} \right )\left [ t \right ]_{-T}^{T}} \mathrm{\Rightarrow E=\lim_{T\rightarrow \infty }\left ( \frac{3}{8} \right )\left [2T \right ]=\infty }

因此,给定功率信号在无限时间内的能量是无限的。

更新于:2021年11月12日

2K+ 次浏览

开启您的职业生涯

完成课程获得认证

开始学习
广告