高斯信号的傅里叶变换
对于连续时间函数 x(t),x(t) 的傅里叶变换可以定义为:
X(ω)=∫∞−∞x(t)e−jωtdt
高斯信号的傅里叶变换
高斯函数 - 高斯函数定义为:
ga(t)=e−at2;forallt
因此,根据傅里叶变换的定义,我们有:
X(ω)=F[e−at2]=∫∞−∞e−at2e−jωtdt
⇒X(ω)=∫∞−∞e−(at2+jωt)dt=e−(ω2/4a)∫∞−∞e[−t√a+(jω/2√a)]2dt
令:
[t√a+(jω/2√a)]=u
则:
du=√adtanddt=du√a
∴
\mathrm{\mathit{\because\int_{-\infty }^{\infty}e^{-u^{\mathrm{2}}} \:du\mathrm{=} \sqrt{\pi}}}
\mathrm{\mathit{\therefore X\left(\omega\right)\mathrm{=}\frac{e^{-\left(\omega^\mathrm{2}/\mathrm{4}a\right)}}{\sqrt{a}}\cdot \sqrt{\pi}\mathrm{=} \sqrt{\frac{\pi}{a}} \cdot e^{-\left(\omega^\mathrm{2}/\mathrm{4}a\right)} } }
因此,高斯函数的傅里叶变换为:
\mathrm{\mathit{F\left [e^{-at^{\mathrm{2}}}\right ] \mathrm{=}\sqrt{\frac{\pi}{a}} \cdot e^{-\left ( \omega^\mathrm{2}/\mathrm{4}a\right )}} }
或者,它也可以写成:
\mathrm{\mathit{e^{-at^\mathrm{2}}\overset{FT}{\leftrightarrow} \sqrt{\frac{\pi}{a}} \cdot e^{-\left (\omega^\mathrm{2}/\mathrm{4}a\right )}}}
高斯函数及其频谱的图形表示如图 1 所示。
高斯调制函数的傅里叶变换
高斯调制信号 定义为
\mathrm{\mathit{x\left(t \right)\mathit{=} e^{-at^{\mathrm{2}}}\:\mathrm{cos} \:\omega _{\mathrm{0}}t}}
\mathrm{\mathit{\Rightarrow x\left(t \right)\mathit{=} e^{-at^{\mathrm{2}}} \left (\frac{e^{j\omega _{\mathrm{0}}t}\mathrm{+}e^{-j\omega _{\mathrm{0}}t}}{\mathrm{2}}\right);\left\{\because \mathrm{cos}\:\omega _{\mathrm{0}}t\mathit{=}\left (\frac{e^{j\omega _{\mathrm{0}}t}\mathrm{+}e^{-j\omega _{\mathrm{0}}t}}{\mathrm{2}}\right) \right \}}}
因此,高斯调制信号的傅里叶变换为
\mathrm{\mathit{X\left( \omega\right) \mathrm{=} \mathrm{\frac{1}{2}}F\left [ e^{-at^{\mathrm{2}}}e^{j\omega _{0}t} \right ] \mathrm{+} }\mathrm{\frac{1}{2}}F\left [ e^{-at^{\mathrm{2}}}e^{-j\omega _{0}t} \right ]}
利用傅里叶变换的频移特性 [即 \mathit{e^{-j\omega _{\mathrm{0}}t}x\left (t\right)\overset{FT}{\leftrightarrow}X \left(\omega\mathrm{+} \omega_{\mathrm{0}}\right)}],得到:
\mathrm{\mathit{F\left[e^{-at^{\mathrm{2}}}e^{j\omega _{0}t} \right]}\mathrm{\mathrm{=}F\left [e^{-at^{\mathrm{2}}} \right]|_{\omega \mathrm{=}\left ( \omega-\omega _{\mathrm{0}}\right )} }}
和
\mathrm{\mathit{F\left[e^{-at^{\mathrm{2}}}e^{-j\omega _{0}t} \right]}\mathrm{\mathrm{=}F\left [e^{-at^{\mathrm{2}}} \right]|_{\omega \mathrm{=}\left ( \omega\mathrm{+}\omega _{\mathrm{0}}\right )} }}
此外,高斯函数的傅里叶变换为:
\mathrm{\mathit{F\left [e^{-at^{\mathrm{2}}}\right ] \mathrm{=}\sqrt{\frac{\pi}{a}} \cdot e^{-\left ( \omega^\mathrm{2}/\mathrm{4}a\right )}}}
因此,高斯调制函数的傅里叶变换为:
\mathrm{X\left( \omega\right) \mathrm{=}\mathrm{\frac{1}{2}\left[\mathit{\sqrt{\frac{\pi}{a}} \cdot e^{-\left [\left(\omega-\omega _{\mathrm{0}}\right)^{\mathrm{2}}/\mathrm{4}a\right]} \mathrm{+} }\sqrt{\frac{\pi}{a}} \cdot e^{-\left [\left(\omega \mathrm{+}\omega _{\mathrm{0}}\right)^{\mathrm{2}}/\mathrm{4}a\right]}\right ]}}
或者,它也可以表示为:
\mathrm{\mathit{e^{-at^{\mathrm{2}}}\:\mathrm{cos} \:\omega _{\mathrm{0}}t}\overset{FT}{\leftrightarrow}\mathrm{\frac{1}{2}\left[\mathit{\sqrt{\frac{\pi}{a}} \cdot e^{-\left [\left(\omega-\omega _{\mathrm{0}}\right)^{\mathrm{2}}/\mathrm{4}a\right]} \mathrm{+} }\sqrt{\frac{\pi}{a}} \cdot e^{-\left [\left(\omega \mathrm{+}\omega _{\mathrm{0}}\right)^{\mathrm{2}}/\mathrm{4}a\right]}\right ]}}
高斯调制信号及其频谱的图形表示如图 2 所示。