使用 C++ 求解微分方程的欧拉法
在本文中,我们将获得一个微分方程f(x, y) = dy / dx 以及初始值y(x0) = y0。我们的任务是使用欧拉法解决该问题,求解微分方程。
欧拉法
欧拉法,又称前向欧拉法,是一种一阶数值程序,利用给定的初始值求解给定的微分方程。
对于微分方程 f(x, y) = dy / dx 欧拉法定义为:
y(n+1) = y(n) + h * f( x(n), y(n) )
h 的值为步长,计算公式为:
h = (x(n) - x(0)) / n
一个示例程序来说明我们解决方案的工作原理:
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
示例
#include <iostream> using namespace std; float equation(float x, float y) { return (x + y); } void solveEquationEulers(float x0, float y, float h, float x) { float temp = 0.0; while (x0 < x) { temp = y; y = y + h * equation(x0, y); x0 = x0 + h; } cout<<"The solution of the differential equation at x = "<< x <<" is f(x, y) = "<<y; } int main() { float x0 = 0; float y0 = 1; float h = 0.5; float x = 0.1; solveEquationEulers(x0, y0, h, x); return 0; }
输出 −
The solution of the differential equation at x = 0.1 is f(x, y) = 1.5
广告