计算以下每个式子的值:\( 4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ} \)
已知
\( 4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ} \)
要求
我们需要计算 \( 4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ} \) 的值。
解:
我们知道,
$sin 30^{\circ}=\frac{1}{2}$
$\cos 60^{\circ}=\frac{1}{2}$
$\cos 45^{\circ}=\frac{1}{\sqrt2}$
$\sin 90^{\circ}=1$
$\sin 60^{\circ}=\frac{\sqrt3}{2}$
因此,$4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ}=4\left[\left(\frac{1}{2}\right)^{4} +\left(\frac{1}{2}\right)^{2}\right] -3\left[\left(\frac{1}{\sqrt{2}}\right)^{2} -( 1)^{2}\right] -\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=4\left(\frac{1}{16} +\frac{1}{4}\right) -3\left(\frac{1}{2} -1\right) -\frac{3}{4}$
$=4\left(\frac{1+1( 4)}{16}\right) -3\left(\frac{1-2( 1)}{2}\right) -\frac{3}{4}$
$=\frac{5}{4} -3\left(\frac{-1}{2}\right) -\frac{3}{4}$
$=\frac{5+3( 2) -3}{4}$
$=\frac{5+6-3}{4}$
$=\frac{8}{4}$
$=2$
因此, $4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ}=2$.
数据结构
网络
关系数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP