求下列各题的和
\( 7+10 \frac{1}{2}+14+\ldots+84 \)
已知
\( 7+10 \frac{1}{2}+14+\ldots+84 \)
要求
我们要求出给定的和。
解答
在给定的数列中:
首项 $a=7$
公差 $d=10\frac{1}{2}-7=\frac{10\times2+1-7\times2}{2}=\frac{21-14}{2}=\frac{7}{2}$
末项 $l=a+(n-1)d=84$
$84=7+(n-1)\times\frac{7}{2}$
$84-7=(n-1) \times\frac{7}{2}$
$2\times77=7n-7$
$7n=154+7$
$n=\frac{161}{7}$
$n=23$
给定数列的和为 $\frac{n}{2}(a+l)$。
$S_n=\frac{23}{2}\times(7+84)$
$=\frac{23}{2}\times91$
$=\frac{2093}{2}$
$=1046\frac{1}{2}$
因此, $7+10 \frac{1}{2}+14+\ldots+84=1046\frac{1}{2}$。
- 相关文章
- 求下列各题的和:(i) $7 + 10\frac{1}{2} + 14 + … + 84$(ii) $34 + 32 + 30 + … + 10$(iii) $-5 + (-8) + (-11) + ….. + (-230)$
- 求和: $7 + 10\frac{1}{2} + 14 + ……… + 84$
- 求下列各题的和: $34 + 32 + 30 + … + 10$
- 求下列乘积: $(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4}) \ldots(1-\frac{1}{10})$
- 填空:(i) \( \frac{-4}{13}-\frac{-3}{26}= \)(ii) \( \frac{-9}{14}+\ldots \ldots \ldots . . .=-1 \)(iii) \( \frac{-7}{9}+\ldots \ldots . . . .=3 \)(iv) ............ \( +\frac{15}{23}=4 \)
- 下列哪些是等差数列?如果是等差数列,求出公差 $d$ 并写出后面的三项。(i) \( 2,4,8,16, \ldots \)(ii) \( 2, \frac{5}{2}, 3, \frac{7}{2}, \ldots \)(iii) \( -1.2,-3.2,-5.2,-7.2, \ldots \)(iv) \( -10,-6,-2,2, \ldots \)(v) \( 3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots \)(vi) \( 0.2,0.22,0.222,0.2222, \ldots \)(vii) \( 0,-4,-8,-12, \ldots \)(viii) \( -\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots \)(ix) \( 1,3,9,27, \ldots \)(x) \( a, 2 a, 3 a, 4 a, \ldots \)(xi) \( a, a^{2}, a^{3}, a^{4}, \ldots \)(xii) \( \sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \)(xiii) \( \sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots \)(xiv) \( 1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots \)(xv) \( 1^{2}, 5^{2}, 7^{2}, 73, \ldots \)
- 求和:$-5+\frac{7}{10}+\frac{3}{7}+(-3)+\frac{5}{14}+\frac{4}{5}$
- 求和: $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$。
- 求下列各题的和:$-5 + (-8) + (-11) + ….. + (-230)$
- 下列哪个是下面表达式的指数形式?$( \frac{-2}{7})^7\p( \frac{-2}{7})^5$
- 如果给定的 $x$ 值是给定等差数列的第 $n$ 项,求 $n$。\( 5 \frac{1}{2}, 11,16 \frac{1}{2}, 22, \ldots ; x=550 \)
- 化简: $\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$。
- 化简下列式子: $(\frac{16}{17} \times 6 \frac{4}{5}) -4 \frac{1}{5}-[1 \frac{1}{14} \div(\frac{1}{2}+\frac{1}{7})] $
- 解下列各题(a) \( \left(-2 \frac{1}{5}\right) \div\left(-\frac{6}{5}\right) \)(b) \( \frac{14}{9} \times \frac{7}{10} \)(c) \( 6 \frac{1}{4}+7 \frac{2}{5} \)\( (d)\left(-1 \frac{2}{3}\right)-\left(-6 \frac{4}{5}\right) \)
- \( \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right] \) 的值是