二叉树中两个节点之间距离查询 - C++ 中 O(logn) 方法
在这个问题中,我们给定一棵二叉树和 Q 个查询。我们的任务是创建一个程序来解决二叉树中两个节点之间距离查询 - C++ 中 O(logn) 方法。
问题描述
在每个查询中,我们给定二叉树的两个节点,我们需要找到这两个节点之间的距离,即从一个节点到达另一个节点需要遍历的边数。
让我们举个例子来理解这个问题,
输入:二叉树
查询 = 3
Q1 -> [2, 6]
Q2 -> [4, 1]
Q3 -> [5, 3]
输出3, 2, 3
解决方案方法
为了解决这个问题,我们将使用距离公式,该公式使用最低公共祖先 (LCA) 及其距离。
Distance(n1, n2) = distance(root,n1) + distance(root,n1) - 2 * distance(root,LCA)
为了解决这个问题,我们将遵循以下步骤,
找到每个节点的层级,即 N1、N2、LCA。
然后,我们将根据树的欧拉遍历创建二叉树的数组。
然后,我们将为 LCA 创建一个线段树。
示例
#include <bits/stdc++.h> #define MAX 1000 using namespace std; int eulerArray[MAX]; int eIndex = 0; int vis[MAX]; int L[MAX]; int H[MAX]; int level[MAX]; struct Node { int data; struct Node* left; struct Node* right; }; struct Node* newNode(int data) { struct Node* temp = new struct Node; temp->data = data; temp->left = temp->right = NULL; return temp; } void FindNodeLevels(struct Node* root) { if (!root) return; queue<pair<struct Node*, int> > q; q.push({ root, 0 }); pair<struct Node*, int> p; while (!q.empty()) { p = q.front(); q.pop(); level[p.first->data] = p.second; if (p.first->left) q.push({ p.first->left, p.second + 1 }); if (p.first->right) q.push({ p.first->right, p.second + 1 }); } } void createEulerTree(struct Node* root) { eulerArray[++eIndex] = root->data; if (root->left) { createEulerTree(root->left); eulerArray[++eIndex] = root->data; } if (root->right) { createEulerTree(root->right); eulerArray[++eIndex] = root->data; } } void creareEulerArray(int size) { for (int i = 1; i <= size; i++) { L[i] = level[eulerArray[i]]; if (vis[eulerArray[i]] == 0) { H[eulerArray[i]] = i; vis[eulerArray[i]] = 1; } } } pair<int, int> seg[4 * MAX]; pair<int, int> min(pair<int, int> a, pair<int, int> b) { if (a.first <= b.first) return a; else return b; } pair<int, int> buildSegTree(int low, int high, int pos) { if (low == high) { seg[pos].first = L[low]; seg[pos].second = low; return seg[pos]; } int mid = low + (high - low) / 2; buildSegTree(low, mid, 2 * pos); buildSegTree(mid + 1, high, 2 * pos + 1); seg[pos] = min(seg[2 * pos], seg[2 * pos + 1]); } pair<int, int> LCA(int qlow, int qhigh, int low, int high, int pos) { if (qlow <= low && qhigh >= high) return seg[pos]; if (qlow > high || qhigh < low) return { INT_MAX, 0 }; int mid = low + (high - low) / 2; return min(LCA(qlow, qhigh, low, mid, 2 * pos), LCA(qlow, qhigh,mid + 1, high, 2 * pos +1)); } int CalcNodeDistance(int node1, int node2, int size) { int prevn1 = node1, prevn2 = node2; node1 = H[node1]; node2 = H[node2]; if (node2 < node1) swap(node1, node2); int lca = LCA(node1, node2, 1, size, 1).second; lca = eulerArray[lca]; return level[prevn1] + level[prevn2] - 2 * level[lca]; } int main() { int N = 6; Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); FindNodeLevels(root); createEulerTree(root); creareEulerArray(2 * N - 1); buildSegTree(1, 2 * N - 1, 1); int Q = 4; int query[Q][2] = {{1, 5}, {4, 6}, {3, 4}, {2, 4} }; for(int i = 0; i < Q; i++) cout<<"The distance between two nodes of binary tree is "<<CalcNodeDistance(query[i][0], query[i][1], 2 * N - 1)<<endl; return 0; }
输出
The distance between two nodes of binary tree is 2 The distance between two nodes of binary tree is 4 The distance between two nodes of binary tree is 3 The distance between two nodes of binary tree is 1
广告