- SQLAlchemy 教程
- SQLAlchemy - 首页
- SQLAlchemy - 简介
- SQLAlchemy Core
- 表达式语言
- 连接数据库
- 创建表
- SQL 表达式
- 执行表达式
- 选择行
- 使用文本SQL
- 使用别名
- 使用 UPDATE 表达式
- 使用 DELETE 表达式
- 使用多个表
- 使用多表更新
- 参数有序更新
- 多表删除
- 使用连接
- 使用连接词
- 使用函数
- 使用集合操作
- SQLAlchemy ORM
- 声明映射
- 创建会话
- 添加对象
- 使用 Query
- 更新对象
- 应用过滤器
- 过滤操作符
- 返回列表和标量
- 文本SQL
- 构建关系
- 处理相关对象
- 使用连接
- 常用关系操作符
- 提前加载
- 删除相关对象
- 多对多关系
- 方言
- SQLAlchemy 有用资源
- SQLAlchemy - 快速指南
- SQLAlchemy - 有用资源
- SQLAlchemy - 讨论
SQLAlchemy ORM - 过滤操作符
现在,我们将学习过滤操作及其相应的代码和输出。
等于
常用的操作符是 ==,它应用条件来检查相等性。
result = session.query(Customers).filter(Customers.id == 2)
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
SQLAlchemy 将发送以下 SQL 表达式:
SELECT customers.id AS customers_id, customers.name AS customers_name, customers.address AS customers_address, customers.email AS customers_email FROM customers WHERE customers.id = ?
以上代码的输出如下:
ID: 2 Name: Komal Pande Address: Banjara Hills Secunderabad Email: komal@gmail.com
不等于
不等于的操作符是 !=,它提供不等于条件。
result = session.query(Customers).filter(Customers.id! = 2)
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
生成的 SQL 表达式为:
SELECT customers.id AS customers_id, customers.name AS customers_name, customers.address AS customers_address, customers.email AS customers_email FROM customers WHERE customers.id != ?
以上代码行的输出如下:
ID: 1 Name: Ravi Kumar Address: Station Road Nanded Email: ravi@gmail.com ID: 3 Name: Rajender Nath Address: Sector 40, Gurgaon Email: nath@gmail.com ID: 4 Name: S.M.Krishna Address: Budhwar Peth, Pune Email: smk@gmail.com
LIKE
like() 方法本身会为 SELECT 表达式中的 WHERE 子句生成 LIKE 条件。
result = session.query(Customers).filter(Customers.name.like('Ra%'))
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
以上 SQLAlchemy 代码等效于以下 SQL 表达式:
SELECT customers.id AS customers_id, customers.name AS customers_name, customers.address AS customers_address, customers.email AS customers_email FROM customers WHERE customers.name LIKE ?
以上代码的输出为:
ID: 1 Name: Ravi Kumar Address: Station Road Nanded Email: ravi@gmail.com ID: 3 Name: Rajender Nath Address: Sector 40, Gurgaon Email: nath@gmail.com
IN
此操作符检查列值是否属于列表中的一组项目。它由 in_() 方法提供。
result = session.query(Customers).filter(Customers.id.in_([1,3]))
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
这里,SQLite 引擎评估的 SQL 表达式如下:
SELECT customers.id AS customers_id, customers.name AS customers_name, customers.address AS customers_address, customers.email AS customers_email FROM customers WHERE customers.id IN (?, ?)
以上代码的输出如下:
ID: 1 Name: Ravi Kumar Address: Station Road Nanded Email: ravi@gmail.com ID: 3 Name: Rajender Nath Address: Sector 40, Gurgaon Email: nath@gmail.com
AND
此连接词可以通过 **在过滤器中放置多个逗号分隔的条件或使用 and_() 方法** 生成,如下所示:
result = session.query(Customers).filter(Customers.id>2, Customers.name.like('Ra%'))
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
from sqlalchemy import and_
result = session.query(Customers).filter(and_(Customers.id>2, Customers.name.like('Ra%')))
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
以上两种方法都会产生类似的 SQL 表达式:
SELECT customers.id AS customers_id, customers.name AS customers_name, customers.address AS customers_address, customers.email AS customers_email FROM customers WHERE customers.id > ? AND customers.name LIKE ?
以上代码行的输出为:
ID: 3 Name: Rajender Nath Address: Sector 40, Gurgaon Email: nath@gmail.com
OR
此连接词由 **or_() 方法** 实现。
from sqlalchemy import or_
result = session.query(Customers).filter(or_(Customers.id>2, Customers.name.like('Ra%')))
for row in result:
print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
结果,SQLite 引擎获得以下等效的 SQL 表达式:
SELECT customers.id AS customers_id, customers.name AS customers_name, customers.address AS customers_address, customers.email AS customers_email FROM customers WHERE customers.id > ? OR customers.name LIKE ?
以上代码的输出如下:
ID: 1 Name: Ravi Kumar Address: Station Road Nanded Email: ravi@gmail.com ID: 3 Name: Rajender Nath Address: Sector 40, Gurgaon Email: nath@gmail.com ID: 4 Name: S.M.Krishna Address: Budhwar Peth, Pune Email: smk@gmail.com
广告