欧拉路径和欧拉回路
欧拉路径是一条路径,通过它我们可以精确访问每条边一次。我们可以多次使用相同的顶点。欧拉回路是一种特殊的欧拉路径。当欧拉路径的起始顶点也与该路径的结束顶点连接时,则称为欧拉回路。

为了检测路径和回路,我们必须遵循以下条件:
- 图必须是连通的。
- 当恰好有两个顶点具有奇数度时,它是一条欧拉路径。
- 现在,当无向图的任何顶点都没有奇数度时,它就是一个欧拉回路。
输入和输出
Input: Adjacency matrix of a graph. 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 Output: The graph has an Eulerian path.
算法
traverse(u, visited)
输入:起始节点u和已访问节点,用于标记已访问的节点。
输出:遍历所有连接的顶点。
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected(graph)
输入:图。
输出:如果图是连通的,则返回True。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
isEulerian(Graph)
输入:给定的图。
输出:如果不是欧拉图,则返回0;如果具有欧拉路径,则返回1;如果找到欧拉回路,则返回2。
Begin if isConnected() is false, then return false define list of degree for each node oddDegree := 0 for all vertex i in the graph, do for all vertex j which are connected with i, do increase degree done if degree of vertex i is odd, then increase dooDegree done if oddDegree > 2, then return 0 if oddDegree = 0, then return 2 else return 1 End
示例
#include<iostream>
#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{0, 0, 0, 1, 0}
};
/* int graph[NODE][NODE] = {
{0, 1, 1, 1, 1},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{1, 0, 0, 1, 0}
};
*/ //uncomment to check Euler Circuit
/* int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 1, 0},
{1, 1, 0, 0, 0},
{1, 1, 0, 0, 1},
{0, 0, 0, 1, 0}
};
*/ //Uncomment to check Non Eulerian Graph
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//for all vertex u as start point, check whether all nodes are visible or not
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
int isEulerian() {
if(isConnected() == false) //when graph is not connected
return 0;
vector<int> degree(NODE, 0);
int oddDegree = 0;
for(int i = 0; i<NODE; i++) {
for(int j = 0; j<NODE; j++) {
if(graph[i][j])
degree[i]++; //increase degree, when connected edge found
}
if(degree[i] % 2 != 0) //when degree of vertices are odd
oddDegree++; //count odd degree vertices
}
if(oddDegree > 2) //when vertices with odd degree greater than 2
return 0;
return (oddDegree)?1:2; //when oddDegree is 0, it is Euler circuit, and when 2, it is Euler path
}
int main() {
int check;
check = isEulerian();
switch(check) {
case 0: cout << "The graph is not an Eulerian graph.";
break;
case 1: cout << "The graph has an Eulerian path.";
break;
case 2: cout << "The graph has a Eulerian circuit.";
break;
}
}输出
The graph has an Eulerian path.
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP