因式分解$(x+1) (x+2) (x+3) (x+6) - 3x^2。
已知:$(x+1) (x+2) (x+3) (x+6) - 3x^2。
要求:对给定的多项式进行因式分解。
解
$=( x+1)( x+2)( x+3)( x+6)-3x^2$
$=( x+1)( x+6)( x+3)( x+2)-3x^2$
$=( x^2+6x+1x+6)( x^2+3x+2x+6)-3x^2$
$=( x^2+6x+6+1x)( x^2+5x+6+x-x)-3x^2$
$=( x^2+6x+6+1x)( x^2+5x+x+6-x)-3x^2$
$=( x^2+6x+6+1x)( x^2+6x+6-x)-3x^2$
$=( x^2+6x+6)^2( +1x)(-x)-3x^2$
$=( x^2+6x+6)^2-x^2-3x^2$
$=( x^2+6x+6)^2-4x^2$
$=( x^2+6x+6)^2-( 2x)^2$
$=( x^2+6x+6+2x)( x^2+6x+6-2x)$ [应用公式 $a^2-b^2=( a+b)( a-b)$]
$=( x^2+8x+6)( x^2+6x-2x+6)$
$=( x^2+8x+6)( x^2+4x+6)$
$=x(x+8+\frac{6}{x})x(x+4+\frac{6}{x})$
$=x^2( x+8+\frac{6}{x})( x+4+\frac{6}{x})$
- 相关文章
- 因式分解:$x^2 - \sqrt{3}x - 6$
- 因式分解:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- 化简:$(x^3 - 2x^2 + 3x - 4) (x - 1) - (2x - 3) (x^2 - x + 1)$
- 检查下列方程是否为二次方程:(i) \( (x+1)^{2}=2(x-3) \)(ii) \( x^{2}-2 x=(-2)(3-x) \)(iii) \( (x-2)(x+1)=(x-1)(x+3) \)(iv) \( (x-3)(2 x+1)=x(x+5) \)(v) \( (2 x-1)(x-3)=(x+5)(x-1) \)(vi) \( x^{2}+3 x+1=(x-2)^{2} \)(vii) \( (x+2)^{3}=2 x\left(x^{2}-1\right) \)(viii) \( x^{3}-4 x^{2}-x+1=(x-2)^{3} \)
- 因式分解:\( x^{3}+x-3 x^{2}-3 \)
- 求下列多项式的最大公因式$x^2- 1, x^2 + 2^x - 3, x^2- 3x + 2$
- 因式分解:(i) \( 12 x^{2}-7 x+1 \)(ii) \( 2 x^{2}+7 x+3 \)(iii) \( 6 x^{2}+5 x-6 \)(iv) \( 3 x^{2}-x-4 \)
- 因式分解:\( \left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+6 \)
- 因式分解:\( \frac{8}{27} x^{3}+1+\frac{4}{3} x^{2}+2 x \)
- 因式分解:\( 2 x^{2}-\frac{5}{6} x+\frac{1}{12} \)
- 因式分解:$x^2 + 6\sqrt{2}x + 10$
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$。
- 1. 对表达式 \( 3 x y - 2 + 3 y - 2 x \)进行因式分解A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 对表达式 \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)进行因式分解A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 解方程 $(x-1) (x-2) (x+3) (x+4) +6=0$。
- 确定下列多项式中哪个有 \( (x+1) \) 作为因式:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)