求下列数字的立方根:2460375, 20346417, 210644875, 57066625
(i) 2460375 = 3375 × 729
(ii) 20346417 = 9261 × 2197
(iii) 210644875 = 42875 × 4913
(iv) 57066625 = 166375 × 343
要求:
我们必须利用给定的事实求下列数字的立方根:2460375, 20346417, 210644875, 57066625
解:
(i) $\sqrt[3]{2460375}=\sqrt[3]{3375 \times 729}$
$=\sqrt[3]{3375} \times \sqrt[3]{729}$
$= \sqrt[3]{3 \times 3 \times 3 \times 5 \times 5 \times 5} \times \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3}$
$=\sqrt[3]{3^{3} \times 5^{3}} \times \sqrt[3]{3^{3} \times 3^{3}}$
$=3 \times 5 \times 3 \times 3 = 135$
$=135$
(ii) $\sqrt[3]{20346417}=\sqrt[3]{9261 \times 2197}$
$=\sqrt[3]{9261} \times \sqrt[3]{2197}$
$=\sqrt[3]{3 \times 3 \times 3 \times 7 \times 7 \times 7} \times \sqrt[3]{13 \times 13 \times 13}$
$=\sqrt[3]{3^{3} \times 7^{3}} \times \sqrt[3]{13^{3}}$
$=(3 \times 7) \times 13 = 273$
$=21 \times 13 = 273$
$=273$
(iii) $\sqrt[3]{210644875}=\sqrt[3]{42875 \times 4913}=\sqrt[3]{42875} \times \sqrt[3]{4913}$
$=\sqrt[3]{5 \times 5 \times 5 \times 7 \times 7 \times 7} \times \sqrt[3]{17 \times 17 \times 17}$
$=\sqrt[3]{5^{3} \times 7^{3}} \times \sqrt[3]{17^{3}}$
$=(5 \times 7) \times 17 = 595$
$=35 \times 17 = 595$
$=595$
(iv) $\sqrt[3]{57066625}=\sqrt[3]{166375 \times 343}$
$=\sqrt[3]{166375} \times \sqrt[3]{343}$
$=\sqrt[3]{5 \times 5 \times 5 \times 11 \times 11 \times 11} \times \sqrt[3]{7 \times 7 \times 7}$
$=\sqrt[3]{5^{3} \times 11^{3}} \times \sqrt[3]{7^{3}}$
$=(5 \times 11) \times 7 = 385$
$=55 \times 7 = 385$
$=385$