求下列乘积,并验证当 x=−1,y=−2 时的结果
(x2y−1)(3−2x2y)
已知
(x2y−1)(3−2x2y)
要求
我们需要求出给定的乘积,并验证当 x=−1,y=−2 时的结果。
解答
我们知道,
(a+b)×(c+d)=a(c+d)+b(c+d)
因此,
(x2y−1)(3−2x2y)=x2y(3−2x2y)−1(3−2x2y)
=x2y(3)−x2y(2x2y)−1(3)+1(2x2y)
=3x2y−2x2+2y1+1−3+2x2y
=3x2y−2x4y2−3+2x2y
=3x2y+2x2y−2x4y2−3
=5x2y−2x4y2−3
左侧 =(x2y−1)(3−2x2y)
=[(−1)2(−2)−1][3−2(−1)2(−2)]
=[1(−2)−1)[3−2(1)(−2)]
=(−2−1)(3+4)
=−3(7)
=−21
右侧 =5x2y−2x4y2−3
=5(−1)2(−2)−2(−1)4(−2)2−3
=5(1)(−2)−2(1)(4)−3
=−10−8−3
=−21
因此,
左侧 = 右侧
广告