将$-\frac{3}{2}x^2y^3$乘以$(2x-y)$,并验证当$x = 1$且$y = 2$时的结果。
待办事项
我们需要将$-\frac{3}{2}x^2y^3$乘以$(2x-y)$,并验证当$x = 1$且$y = 2$时的结果。
解答
$\frac{-3}{2} x^{2} y^{3} \times(2 x-y)=\frac{-3}{2} x^{2} y^{3} \times 2 x-\frac{3}{2} x^{2} y^{3} \times(-y)$
$=\frac{-3}{2} \times 2 \times x^{2+1} y^{3}-\frac{3}{2} \times(-y) x^{2} y^{3}$
$=-3 x^{3} y^{3}+\frac{3}{2} x^{2} y^{3+1}$
$=-3 x^{3} y^{3}+\frac{3}{2} x^{2} y^{4}$
如果$x=1, y=2$,则
左边 $=\frac{-3}{2} x^{2} y^{3} \times(2 x-y)$
$=\frac{-3}{2}(1)^{2}(2)^{3}(2 \times 1-2)$
$=\frac{-3}{2} \times 1 \times 8 \times 0$
$=0$
右边 $=-3 x^{3} y^{3}+\frac{3}{2} x^{2} y^{4}$
$=-3(1)^{3}(2)^{3}+\frac{3}{2}(1)^{2}+(2)^{4}$
$=-3 \times 1 \times 8+\frac{3}{2} \times 1 \times 16$
$=-24+24$
$=0$
因此,
左边 $=$ 右边
- 相关文章
- 求下列乘积,并验证当$x = -1, y = -2$时的结果:$(x^2y-1) (3-2x^2y)$
- 解方程组:$\frac{x}{2}+\frac{2y}{3}=-1$ 和 $x-\frac{y}{3}=3$。
- 计算乘积:\( \left(3 x^{2} y-5 x y^{2}\right) \) 乘以 \( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
- 验证 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 计算乘积:$(2x^2y^2 - 5xy^2)$ 乘以 $(x^2-y^2)$
- 化简: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$。
- 求下列乘积,并验证当$x = -1, y = -2$时的结果:\( \left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right) \)
- 求$(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$的乘积,并验证当 $x=2, y=3$ 和 $z=-1$时的结果。
- 验证:(i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- 将下列方程组化为线性方程组并求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- \求 $(x +y) \div (x - y)$。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 解下列方程组:$x\ +\ 2y\ =\ \frac{3}{2}$ $2x\ +\ y\ =\ \frac{3}{2}$
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 因式分解表达式 \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 验证:$x\times(y\times z)=(x\times y)\times z$,其中$x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。
- 验证性质:$x \times y = y \times x$,取:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)