已知 $(x^{2}+y^{2})$=74 和 xy =35,求值:a) x+yb) x-y
已知 $(x^{2} + y^{2})$ = 74;xy = 35
求:
a) $x+y$
b)$x-y$
解法
a)
$(x + y ) ^ {2} = x^{2} + y^{2} + 2xy$
= $74 + 2(35)$
= $74 + 70 = 144$
所以 $x + y$ = 12 或 -12
b)
$(x - y ) ^ {2} = x^{2} + y^{2} - 2xy$
= $74 - 2(35) = 74 - 70 = 44$
$x - y$ = 2 或 -2
广告